CFNCell
LuxRecurrentLayers.CFNCell
— TypeCFNCell(in_dims => out_dims, [activation];
use_bias=true, train_state=false, init_bias=nothing,
init_recurrent_bias=nothing, init_weight=nothing,
init_recurrent_weight=nothing, init_state=zeros32)
Equations
\[\begin{aligned} \boldsymbol{\theta}(t) &= \sigma\left(\mathbf{W}_{ih}^{\theta} \mathbf{x}(t) + \mathbf{b}_{ih}^{\theta} + \mathbf{W}_{hh}^{\theta} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{\theta}\right) \\ \boldsymbol{\eta}(t) &= \sigma\left(\mathbf{W}_{ih}^{\eta} \mathbf{x}(t) + \mathbf{b}_{ih}^{\eta} + \mathbf{W}_{hh}^{\eta} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{\eta} \right) \\ \mathbf{h}(t) &= \boldsymbol{\theta}(t) \circ \tanh(\mathbf{h}(t-1)) + \boldsymbol{\eta}(t) \circ \tanh(\mathbf{W}_{ih}^h \mathbf{x}(t) + \mathbf{b}_{ih}^{h}) \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimensionactivation
: activation function. Default istanh
Keyword arguments
use_bias
: Flag to use bias in the computation. Default set totrue
.train_state
: Flag to set the initial hidden state as trainable. Default set tofalse
.init_bias
: Initializer for input to hidden bias $\mathbf{b}_{ih}^{\theta}, \mathbf{b}_{ih}^{\eta}, \mathbf{b}_{ih}^{h}$. Must be a tuple containing 3 functions, e.g.,(glorot_normal, kaiming_uniform)
. If a single functionfn
is provided, it is automatically expanded into a 3-element tuple (fn, fn, fn). If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_bias
: Initializer for hidden to hidden bias $\mathbf{b}_{hh}^{\theta}, \mathbf{b}_{hh}^{\eta}$. Must be a tuple containing 2 functions, e.g.,(glorot_normal, kaiming_uniform)
. If a single functionfn
is provided, it is automatically expanded into a 2-element tuple (fn, fn). If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_weight
: Initializer for input to hidden weights $\mathbf{W}_{ih}^{\theta}, \mathbf{W}_{ih}^{\eta}, \mathbf{W}_{ih}^{h}$. Must be a tuple containing 3 functions, e.g.,(glorot_normal, kaiming_uniform)
. If a single functionfn
is provided, it is automatically expanded into a 3-element tuple (fn, fn, fn). If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_weight
: Initializer for input to hidden weights $\mathbf{W}_{hh}^{\theta}, \mathbf{W}_{hh}^{\eta}$. Must be a tuple containing 2 functions, e.g.,(glorot_normal, kaiming_uniform)
. If a single functionfn
is provided, it is automatically expanded into a 2-element tuple (fn, fn). If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_state
: Initializer for hidden state. Default set tozeros32
.
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
- Creates a hidden state usinginit_state
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
- Repeatshidden_state
from parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, ))
is provided, then the output and a tuple containing the updated hidden state is returned.
Returns
Tuple containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Concatenated weights to map from input to the hidden state. $\{ \mathbf{W}_{ih}^{\theta}, \mathbf{W}_{ih}^{\eta}, \mathbf{W}_{ih}^{h} \}$ The initializers ininit_weight
are applied in the order they appear: the first function is used for $\mathbf{W}_{ih}^{\theta}$, the second for $\mathbf{W}_{ih}^{\eta}$, and the third for $\mathbf{W}_{ih}^h$.weight_hh
: Concatenated weights to map from hidden to hidden state. $\{ \mathbf{W}_{hh}^{\theta}, \mathbf{W}_{hh}^{\eta} \}$ The initializers ininit_recurrent_weight
are applied in the order they appear: the first function is used for $\mathbf{W}_{hh}^{\theta}$, and the second for $\mathbf{W}_{hh}^{\eta}$.bias_ih
: Bias vector for the input-hidden connection (not present ifuse_bias=false
) $\{ \mathbf{b}_{ih}^{\theta}, \mathbf{b}_{ih}^{\eta}, \mathbf{b}_{ih}^{h} \}$ The initializers ininit_bias
are applied in the order they appear: the first function is used for $\mathbf{b}_{ih}^{\theta}$, the second for $\mathbf{b}_{ih}^{\eta}$, and the third for $\mathbf{b}_{ih}^{h}$.bias_ih
: Bias vector for the input-hidden connection (not present ifuse_bias=false
) $\{ \mathbf{b}_{hh}^{\theta}, \mathbf{b}_{hh}^{\eta} \}$ The initializers ininit_recurrent_bias
are applied in the order they appear: the first function is used for $\mathbf{b}_{hh}^{\theta}$, and the second for $\mathbf{b}_{hh}^{\eta}$.hidden_state
: Initial hidden state vector (not present iftrain_state=false
)
States
rng
: Controls the randomness (if any) in the initial state generation