LEMCell
LuxRecurrentLayers.LEMCell
— TypeLEMCell(in_dims => out_dims;
use_bias=true, train_state=false, train_memory=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32, init_memory=zeros32, dt=1.0)
Equations
\[\begin{aligned} \boldsymbol{\Delta t}(t) &= \Delta t \cdot \hat{\sigma} \left( \mathbf{W}_{ih}^{1} \mathbf{x}(t) + \mathbf{b}_{ih}^{1} + \mathbf{W}_{hh}^{1} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{1} \right), \\ \overline{\boldsymbol{\Delta t}}(t) &= \Delta t \cdot \hat{\sigma} \left( \mathbf{W}_{ih}^{2} \mathbf{x}(t) + \mathbf{b}_{ih}^{2} + \mathbf{W}_{hh}^{2} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{2} \right), \\ \mathbf{c}(t) &= \left(1 - \boldsymbol{\Delta t}(t)\right) \circ \mathbf{c}(t-1) + \boldsymbol{\Delta t}(t) \circ \sigma\left( \mathbf{W}_{ih}^{c} \mathbf{x}(t) + \mathbf{b}_{ih}^{c} + \mathbf{W}_{hh}^{c} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{c} \right), \\ \mathbf{h}(t) &= \left(1 - \boldsymbol{\Delta t}(t)\right) \circ \mathbf{h}(t-1) + \boldsymbol{\Delta t}(t) \circ \sigma\left( \mathbf{W}_{ih}^{h} \mathbf{x}(t) + \mathbf{b}_{ih}^{h} + \mathbf{W}_{ch} \mathbf{c}(t) + \mathbf{b}_{ch} \right) \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias
: Flag to use bias in the computation. Default set totrue
.train_state
: Flag to set the initial hidden state as trainable. Default set tofalse
.train_memory
: Flag to set the initial memory state as trainable. Default set tofalse
.init_bias
: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{1}, \mathbf{b}_{ih}^{2}, \mathbf{b}_{ih}^{c}, \mathbf{b}_{ih}^{h}$. Must be a tuple of 4 functions, e.g.,(glorot_uniform, kaiming_uniform, lecun_normal, zeros)
. If a single function is passed, it is expanded to a 4-element tuple. If set tonothing
, biases are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_bias
: Initializer for hidden-to-hidden biases $\mathbf{b}_{hh}^{1}, \mathbf{b}_{hh}^{2}, \mathbf{b}_{hh}^{c}, \mathbf{b}_{hh}^{h}$. Must be a tuple of 3 functions. If a single function is passed, it is expanded to a 3-element tuple. If set tonothing
, biases are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_cell_bias
: Initializer for bias $\mathbf{b}_{ch}$. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_weight
: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{1}, \mathbf{W}_{ih}^{2}, \mathbf{W}_{ih}^{c}, \mathbf{W}_{ih}^{h}$. Must be a tuple of 4 functions. If a single function is passed, it is expanded to a 4-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_weight
: Initializer for hidden-to-hidden weights $\mathbf{W}_{hh}^{1}, \mathbf{W}_{hh}^{2}, \mathbf{W}_{hh}^{c}, \mathbf{W}_{hh}^{h}$. Must be a tuple of 3 functions. If a single function is passed, it is expanded to a 3-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_cell_weight
: Initializer for input to hidden weight $\mathbf{W}_{ch}$. If set to
nothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_state
: Initializer for hidden state. Default set tozeros32
.init_memory
: Initializer for memory. Default set tozeros32
.dt
: timestep. Defaul is 1.0.
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set tofalse
- Creates a hidden state usinginit_state
, hidden memory usinginit_memory
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set tofalse
- Repeatshidden_state
vector from the parameters to match the shape ofx
, creates hidden memory usinginit_memory
and proceeds to Case 2. - Case 1c: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set totrue
- Creates a hidden state usinginit_state
, repeats the memory vector from parameters to match the shape ofx
and proceeds to Case 2. - Case 1d: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set totrue
- Repeats the hidden state and memory vectors from the parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, c))
is provided, then the output and a tuple containing the updated hidden state and memory is returned.
Returns
Tuple Containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Concatenated weights mapping from input to internal units $\{ \mathbf{W}_{ih}^{1}, \mathbf{W}_{ih}^{2}, \mathbf{W}_{ih}^{c}, \mathbf{W}_{ih}^{h} \}$ The functions provided ininit_weight
are applied in order: the first initializes $\mathbf{W}_{ih}^{1}$, the second $\mathbf{W}_{ih}^{2}$, the third $\mathbf{W}_{ih}^{c}$, and the fourth $\mathbf{W}_{ih}^{h}$.weight_hh
: Concatenated weights mapping from hidden state to internal units $\{ \mathbf{W}_{hh}^{1}, \mathbf{W}_{hh}^{2}, \mathbf{W}_{hh}^{c} \}$ The functions provided ininit_recurrent_weight
are applied in order: the first initializes $\mathbf{W}_{hh}^{1}$, the second $\mathbf{W}_{hh}^{2}$, and the third $\mathbf{W}_{hh}^{c}$.weight_ch
: Weights to map from cell space $\mathbf{W}_{ch}$.bias_ih
: Concatenated input-to-hidden bias vectors (not present ifuse_bias=false
) $\{ \mathbf{b}_{ih}^{1}, \mathbf{b}_{ih}^{2}, \mathbf{b}_{ih}^{c}, \mathbf{b}_{ih}^{h} \}$ The functions provided ininit_bias
are applied in order: the first initializes $\mathbf{b}_{ih}^{1}$, the second $\mathbf{b}_{ih}^{2}$, the third $\mathbf{b}_{ih}^{c}$, and the fourth $\mathbf{b}_{ih}^{h}$.bias_hh
: Concatenated hidden-to-hidden bias vectors (not present ifuse_bias=false
) $\{ \mathbf{b}_{hh}^{1}, \mathbf{b}_{hh}^{2}, \mathbf{b}_{hh}^{c} \}$ The functions provided ininit_recurrent_bias
are applied in order: the first initializes $\mathbf{b}_{hh}^{1}$, the second $\mathbf{b}_{hh}^{2}$, and the third $\mathbf{b}_{hh}^{c}$.bias_ch
: Bias vector for the cell-hidden connection $\mathbf{b}_{ch}$ (not present ifuse_bias=false
)hidden_state
: Initial hidden state vector (not present iftrain_state=false
)memory
: Initial memory vector (not present iftrain_memory=false
)
States
rng
: Controls the randomness (if any) in the initial state generation