LightRUCell
LuxRecurrentLayers.LightRUCell
— TypeLightRUCell(in_dims => out_dims, [activation];
use_bias=true, train_state=false, init_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32)
Light recurrent unit.
Equations
\[\begin{aligned} \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}_{ih}^{h} \mathbf{x}(t) + \mathbf{b}_{ih}^{h} \right), \\ \mathbf{f}(t) &= \delta\left( \mathbf{W}_{ih}^{f} \mathbf{x}(t) + \mathbf{b}_{ih}^{f} + \mathbf{W}_{hh}^{f} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{f} \right), \\ \mathbf{h}(t) &= (1 - \mathbf{f}(t)) \circ \mathbf{h}(t-1) + \mathbf{f}(t) \circ \tilde{\mathbf{h}}(t). \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias
: Flag to use bias in the computation. Default set totrue
.train_state
: Flag to set the initial hidden state as trainable. Default set tofalse
.init_bias
: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{h}, \mathbf{b}_{ih}^{f}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing
, each bias is initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_bias
: Initializer for hidden-to-hidden bias $\mathbf{b}_{hh}^{f}$. Must be a single function. If set tonothing
, initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_weight
: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{h}, \mathbf{W}_{ih}^{f}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_recurrent_weight
: Initializer for hidden-to-hidden weight $\mathbf{W}_{hh}^{f}$. Must be a single function. If set tonothing
, initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. Default isnothing
.init_state
: Initializer for hidden state. Default set tozeros32
.
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
- Creates a hidden state usinginit_state
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
- Repeatshidden_state
from parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, ))
is provided, then the output and a tuple containing the updated hidden state is returned.
Returns
Tuple containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Input-to-hidden weights $\{ \mathbf{W}_{ih}^{h}, \mathbf{W}_{ih}^{f} \}$ The functions frominit_weight
are applied in order: the first initializes $\mathbf{W}_{ih}^{h}$, the second $\mathbf{W}_{ih}^{f}$.weight_hh
: Hidden-to-hidden weight $\{ \mathbf{W}_{hh}^{f} \}$ Initialized viainit_recurrent_weight
.bias_ih
: Input-to-hidden biases (ifuse_bias=true
) $\{ \mathbf{b}_{ih}^{h}, \mathbf{b}_{ih}^{f} \}$ The functions frominit_bias
are applied in order: the first initializes $\mathbf{b}_{ih}^{h}$, the second $\mathbf{b}_{ih}^{f}$.bias_hh
: Hidden-to-hidden bias (ifuse_bias=true
) $\{ \mathbf{b}_{hh}^{f} \}$ Initialized viainit_recurrent_bias
.hidden_state
: Initial hidden state vector (not present iftrain_state=false
)
States
rng
: Controls the randomness (if any) in the initial state generation