MultiplicativeLSTMCell
LuxRecurrentLayers.MultiplicativeLSTMCell
— TypeMultiplicativeLSTMCell(in_dims => out_dims;
use_bias=true, train_state=false, train_memory=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_multiplicative_bias=nothing, init_weight=nothing,
init_recurrent_weight=nothing, init_multiplicative_weight=nothing,
init_state=zeros32, init_memory=zeros32)
Multiplicative long short term memory cell.
Equations
\[\begin{aligned} \mathbf{m}(t) &= \left( \mathbf{W}_{ih}^{m} \mathbf{x}(t) + \mathbf{b}_{ih}^{m} \right) \circ \left( \mathbf{W}_{hh}^{m} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{m} \right) \\ \hat{\mathbf{h}}(t) &= \mathbf{W}_{ih}^{h} \mathbf{x}(t) + \mathbf{b}_{ih}^{h} + \mathbf{W}_{mh}^{h} \mathbf{m}(t) + \mathbf{b}_{mh}^{h} \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}_{ih}^{i} \mathbf{x}(t) + \mathbf{b}_{ih}^{i} + \mathbf{W}_{mh}^{i} \mathbf{m}(t) + \mathbf{b}_{mh}^{i} \right) \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}_{ih}^{o} \mathbf{x}(t) + \mathbf{b}_{ih}^{o} + \mathbf{W}_{mh}^{o} \mathbf{m}(t) + \mathbf{b}_{mh}^{o} \right) \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}_{ih}^{f} \mathbf{x}(t) + \mathbf{b}_{ih}^{f} + \mathbf{W}_{mh}^{f} \mathbf{m}(t) + \mathbf{b}_{mh}^{f} \right) \\ \mathbf{c}(t) &= \mathbf{f}(t) \circ \mathbf{c}(t-1) + \mathbf{i}(t) \circ \tanh\left( \hat{\mathbf{h}}(t) \right) \\ \mathbf{h}(t) &= \tanh\left( \mathbf{c}(t) \right) \circ \mathbf{o}(t) \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias
: Flag to use bias in the computation. Default set totrue
.train_state
: Flag to set the initial hidden state as trainable. Default set tofalse
.train_memory
: Flag to set the initial memory state as trainable. Default set tofalse
.init_bias
: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{m}, \mathbf{b}_{ih}^{h}, \mathbf{b}_{ih}^{i}, \mathbf{b}_{ih}^{o}, \mathbf{b}_{ih}^{f}$. Must be a tuple containing 5 functions. If a single value is passed, it is copied into a 5-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. The functions are applied in order: the first initializes $\mathbf{b}_{ih}^{m}$, the second $\mathbf{b}_{ih}^{h}$, the third $\mathbf{b}_{ih}^{i}$, the fourth $\mathbf{b}_{ih}^{o}$, and the fifth $\mathbf{b}_{ih}^{f}$.init_recurrent_bias
: Initializer for hidden-to-hidden biases $\mathbf{b}_{hh}^{m}$. Must be a tuple containing 1 function. If a single value is passed, it is used directly. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_multiplicative_bias
: Initializer for multiplicative-to-hidden biases $\mathbf{b}_{mh}^{h}, \mathbf{b}_{mh}^{i}, \mathbf{b}_{mh}^{o}, \mathbf{b}_{mh}^{f}$. Must be a tuple containing 4 functions. If a single value is passed, it is copied into a 4-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. The functions are applied in order: the first initializes $\mathbf{b}_{mh}^{h}$, the second $\mathbf{b}_{mh}^{i}$, the third $\mathbf{b}_{mh}^{o}$, and the fourth $\mathbf{b}_{mh}^{f}$.init_weight
: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{m}, \mathbf{W}_{ih}^{h}, \mathbf{W}_{ih}^{i}, \mathbf{W}_{ih}^{o}, \mathbf{W}_{ih}^{f}$. Must be a tuple containing 5 functions. If a single value is passed, it is copied into a 5-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. The functions are applied in order: the first initializes $\mathbf{W}_{ih}^{m}$, the second $\mathbf{W}_{ih}^{h}$, the third $\mathbf{W}_{ih}^{i}$, the fourth $\mathbf{W}_{ih}^{o}$, and the fifth $\mathbf{W}_{ih}^{f}$.init_recurrent_weight
: Initializer for hidden-to-hidden weights $\mathbf{W}_{hh}^{m}$. Must be a tuple containing 1 function. If a single value is passed, it is used directly. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_multiplicative_weight
: Initializer for multiplicative-to-hidden weights $\mathbf{W}_{mh}^{h}, \mathbf{W}_{mh}^{i}, \mathbf{W}_{mh}^{o}, \mathbf{W}_{mh}^{f}$. Must be a tuple containing 4 functions. If a single value is passed, it is copied into a 4-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
wherebound = inv(sqrt(out_dims))
. The functions are applied in order: the first initializes $\mathbf{W}_{mh}^{h}$, the second $\mathbf{W}_{mh}^{i}$, the third $\mathbf{W}_{mh}^{o}$, and the fourth $\mathbf{W}_{mh}^{f}$.init_state
: Initializer for hidden state. Default set tozeros32
.init_memory
: Initializer for memory. Default set tozeros32
.
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set tofalse
- Creates a hidden state usinginit_state
, hidden memory usinginit_memory
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set tofalse
- Repeatshidden_state
vector from the parameters to match the shape ofx
, creates hidden memory usinginit_memory
and proceeds to Case 2. - Case 1c: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set totrue
- Creates a hidden state usinginit_state
, repeats the memory vector from parameters to match the shape ofx
and proceeds to Case 2. - Case 1d: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set totrue
- Repeats the hidden state and memory vectors from the parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, c))
is provided, then the output and a tuple containing the updated hidden state and memory is returned.
Returns
Tuple Containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Input-to-hidden weights $\{ \mathbf{W}_{ih}^{m}, \mathbf{W}_{ih}^{h}, \mathbf{W}_{ih}^{i}, \mathbf{W}_{ih}^{o}, \mathbf{W}_{ih}^{f} \}$weight_hh
: Hidden-to-hidden weights $\{ \mathbf{W}_{hh}^{m} \}$weight_mh
: Multiplicative-to-hidden weights $\{ \mathbf{W}_{mh}^{h}, \mathbf{W}_{mh}^{i}, \mathbf{W}_{mh}^{o}, \mathbf{W}_{mh}^{f} \}$bias_ih
: Input-to-hidden biases (ifuse_bias=true
) $\{ \mathbf{b}_{ih}^{m}, \mathbf{b}_{ih}^{h}, \mathbf{b}_{ih}^{i}, \mathbf{b}_{ih}^{o}, \mathbf{b}_{ih}^{f} \}$bias_hh
: Hidden-to-hidden biases (ifuse_bias=true
) $\{ \mathbf{b}_{hh}^{m} \}$bias_mh
: Multiplicative-to-hidden biases (ifuse_bias=true
) $\{ \mathbf{b}_{mh}^{h}, \mathbf{b}_{mh}^{i}, \mathbf{b}_{mh}^{o}, \mathbf{b}_{mh}^{f} \}$hidden_state
: Initial hidden state vector (not present iftrain_state=false
)memory
: Initial memory vector (not present iftrain_memory=false
)
States
rng
: Controls the randomness (if any) in the initial state generation