MinimalRNNCell
LuxRecurrentLayers.MinimalRNNCell
— TypeMinimalRNNCell(in_dims => out_dims;
use_bias=true, train_state=false,
init_encoder_bias=nothing, init_recurrent_bias=nothing,
init_memory_bias=nothing, init_encoder_weight=nothing,
init_recurrent_weight=nothing, init_memory_weight=nothing,
init_state=zeros32,)
Minimal recurrent neural network unit.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}_{ih}^{z} \mathbf{x}(t) + \mathbf{b}_{ih}^{z} \right), \\ \mathbf{u}(t) &= \sigma\left( \mathbf{W}_{hh}^{u} \mathbf{h}(t-1) + \mathbf{W}_{zh}^{u} \mathbf{z}(t) + \mathbf{b}_{hh}^{u} \right), \\ \mathbf{h}(t) &= \mathbf{u}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{u}(t)\right) \circ \mathbf{z}(t) \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimension
Keyword arguments
use_bias
: Set to false to deactivate biastrain_state
: Trainable initial hidden state can be activated by setting this totrue
train_memory
: Trainable initial memory can be activated by setting this totrue
init_encoder_bias
: Initializer for encoder bias $\mathbf{b}_{ih}^{z}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_recurrent_bias
: Initializer for recurrent bias $\mathbf{b}_{hh}^{u}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_memory_bias
: Initializer for memory bias $\mathbf{b}_{zh}^{u}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_encoder_weight
: Initializer for encoder weight $\mathbf{W}_{ih}^{z}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_recurrent_weight
: Initializer for recurrent weight $\mathbf{W}_{hh}^{u}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_memory_weight
: Initializer for memory weight $\mathbf{W}_{zh}^{u}$. Must be a single function. Ifnothing
, initialized from a uniform distribution in[-bound, bound]
wherebound = inv(sqrt(out_dims))
.init_state
: Initializer for hidden stateinit_memory
: Initializer for memory
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set tofalse
- Creates a hidden state usinginit_state
, hidden memory usinginit_memory
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set tofalse
- Repeatshidden_state
vector from the parameters to match the shape ofx
, creates hidden memory usinginit_memory
and proceeds to Case 2. - Case 1c: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set totrue
- Creates a hidden state usinginit_state
, repeats the memory vector from parameters to match the shape ofx
and proceeds to Case 2. - Case 1d: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set totrue
- Repeats the hidden state and memory vectors from the parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, c))
is provided, then the output and a tuple containing the updated hidden state and memory is returned.
Returns
Tuple Containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Encoder weights $\{ \mathbf{W}_{ih}^{z} \}$weight_hh
: Recurrent weights $\{ \mathbf{W}_{hh}^{u} \}$weight_mm
: Memory weights $\{ \mathbf{W}_{zh}^{u} \}$bias_ih
: Encoder bias (ifuse_bias=true
) $\{ \mathbf{b}_{ih}^{z} \}$bias_hh
: Recurrent bias (ifuse_bias=true
) $\{ \mathbf{b}_{hh}^{u} \}$bias_mm
: Memory bias (ifuse_bias=true
) $\{ \mathbf{b}_{zh}^{u} \}$hidden_state
: Initial hidden state vector $\mathbf{h}(0)$ (not present iftrain_state=false
).memory
: Initial memory vector $\mathbf{c}(0)$ (not present iftrain_memory=false
).
States
rng
: Controls the randomness (if any) in the initial state generation