NASCell

LuxRecurrentLayers.NASCellType
NASCell(in_dims => out_dims;
    use_bias=true, train_state=false, train_memory=false,
    init_bias=nothing, init_recurrent_bias=nothing,
    init_weight=nothing, init_recurrent_weight=nothing,
    init_state=zeros32, init_memory=zeros32)

Neural Architecture Search unit.

Equations

\[\begin{aligned} \mathbf{o}_1(t) &= \sigma\left( \mathbf{W}_{ih}^{(1)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(1)} + \mathbf{W}_{hh}^{(1)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(1)} \right), \\ \mathbf{o}_2(t) &= \text{ReLU}\left( \mathbf{W}_{ih}^{(2)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(2)} + \mathbf{W}_{hh}^{(2)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(2)} \right), \\ \mathbf{o}_3(t) &= \sigma\left( \mathbf{W}_{ih}^{(3)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(3)} + \mathbf{W}_{hh}^{(3)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(3)} \right), \\ \mathbf{o}_4(t) &= \text{ReLU}\left( \left( \mathbf{W}_{ih}^{(4)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(4)} \right) \circ \left( \mathbf{W}_{hh}^{(4)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(4)} \right) \right), \\ \mathbf{o}_5(t) &= \tanh\left( \mathbf{W}_{ih}^{(5)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(5)} + \mathbf{W}_{hh}^{(5)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(5)} \right), \\ \mathbf{o}_6(t) &= \sigma\left( \mathbf{W}_{ih}^{(6)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(6)} + \mathbf{W}_{hh}^{(6)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(6)} \right), \\ \mathbf{o}_7(t) &= \tanh\left( \mathbf{W}_{ih}^{(7)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(7)} + \mathbf{W}_{hh}^{(7)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(7)} \right), \\ \mathbf{o}_8(t) &= \sigma\left( \mathbf{W}_{ih}^{(8)} \mathbf{x}(t) + \mathbf{b}_{ih}^{(8)} + \mathbf{W}_{hh}^{(8)} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{(8)} \right), \\ \mathbf{l}_1(t) &= \tanh\left( \mathbf{o}_1(t) \circ \mathbf{o}_2(t) \right), \\ \mathbf{l}_2(t) &= \tanh\left( \mathbf{o}_3(t) + \mathbf{o}_4(t) \right), \\ \mathbf{l}_3(t) &= \tanh\left( \mathbf{o}_5(t) \circ \mathbf{o}_6(t) \right), \\ \mathbf{l}_4(t) &= \sigma\left( \mathbf{o}_7(t) + \mathbf{o}_8(t) \right), \\ \mathbf{l}_1(t) &= \tanh\left( \mathbf{l}_1(t) + \mathbf{c}(t-1) \right), \\ \mathbf{c}(t) &= \mathbf{l}_1(t) \circ \mathbf{l}_2(t), \\ \mathbf{l}_5(t) &= \tanh\left( \mathbf{l}_3(t) + \mathbf{l}_4(t) \right), \\ \mathbf{h}(t) &= \tanh\left( \mathbf{c}(t) \circ \mathbf{l}_5(t) \right) \end{aligned}\]

Arguments

  • in_dims: Input Dimension
  • out_dims: Output (Hidden State & Memory) Dimension

Keyword Arguments

  • use_bias: Flag to use bias in the computation. Default set to true.
  • train_state: Flag to set the initial hidden state as trainable. Default set to false.
  • train_memory: Flag to set the initial memory state as trainable. Default set to false.
  • init_bias: Initializer for input-to-hidden biases $\{ \mathbf{b}_{ih}^{(1)}, \mathbf{b}_{ih}^{(2)}, \dots, \mathbf{b}_{ih}^{(8)} \}$. Must be a tuple containing 8 functions. If a single value is passed, it is copied into an 8-element tuple. If set to nothing, weights are initialized from a uniform distribution within [-bound, bound], where bound = inv(sqrt(out_dims)). The functions are applied in order to initialize $\mathbf{b}_{ih}^{(1)}$ through $\mathbf{b}_{ih}^{(8)}$. Default set to nothing.
  • init_recurrent_bias: Initializer for hidden-to-hidden biases $\{ \mathbf{b}_{hh}^{(1)}, \mathbf{b}_{hh}^{(2)}, \dots, \mathbf{b}_{hh}^{(8)} \}$. Must be a tuple containing 8 functions. If a single value is passed, it is copied into an 8-element tuple. If set to nothing, weights are initialized from a uniform distribution within [-bound, bound], where bound = inv(sqrt(out_dims)). The functions are applied in order to initialize $\mathbf{b}_{hh}^{(1)}$ through $\mathbf{b}_{hh}^{(8)}$. Default set to nothing.
  • init_weight: Initializer for input-to-hidden weights $\{ \mathbf{W}_{ih}^{(1)}, \mathbf{W}_{ih}^{(2)}, \dots, \mathbf{W}_{ih}^{(8)} \}$. Must be a tuple containing 8 functions. If a single value is passed, it is copied into an 8-element tuple. If set to nothing, weights are initialized from a uniform distribution within [-bound, bound], where bound = inv(sqrt(out_dims)). The functions are applied in order to initialize $\mathbf{W}_{ih}^{(1)}$ through $\mathbf{W}_{ih}^{(8)}$. Default set to nothing.
  • init_recurrent_weight: Initializer for hidden-to-hidden weights $\{ \mathbf{W}_{hh}^{(1)}, \mathbf{W}_{hh}^{(2)}, \dots, \mathbf{W}_{hh}^{(8)} \}$. Must be a tuple containing 8 functions. If a single value is passed, it is copied into an 8-element tuple. If set to nothing, weights are initialized from a uniform distribution within [-bound, bound], where bound = inv(sqrt(out_dims)). The functions are applied in order to initialize $\mathbf{W}_{hh}^{(1)}$ through $\mathbf{W}_{hh}^{(8)}$. Default set to nothing.
  • init_state: Initializer for hidden state. Default set to zeros32.
  • init_memory: Initializer for memory. Default set to zeros32.

Inputs

  • Case 1a: Only a single input x of shape (in_dims, batch_size), train_state is set to false, train_memory is set to false - Creates a hidden state using init_state, hidden memory using init_memory and proceeds to Case 2.
  • Case 1b: Only a single input x of shape (in_dims, batch_size), train_state is set to true, train_memory is set to false - Repeats hidden_state vector from the parameters to match the shape of x, creates hidden memory using init_memory and proceeds to Case 2.
  • Case 1c: Only a single input x of shape (in_dims, batch_size), train_state is set to false, train_memory is set to true - Creates a hidden state using init_state, repeats the memory vector from parameters to match the shape of x and proceeds to Case 2.
  • Case 1d: Only a single input x of shape (in_dims, batch_size), train_state is set to true, train_memory is set to true - Repeats the hidden state and memory vectors from the parameters to match the shape of x and proceeds to Case 2.
  • Case 2: Tuple (x, (h, c)) is provided, then the output and a tuple containing the updated hidden state and memory is returned.

Returns

  • Tuple Containing

    • Output $h_{new}$ of shape (out_dims, batch_size)
    • Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
  • Updated model state

Parameters

  • weight_ih: Input-to-hidden weights $\{ \mathbf{W}_{ih}^{(1)}, \mathbf{W}_{ih}^{(2)}, \dots, \mathbf{W}_{ih}^{(8)} \}$
  • weight_hh: Hidden-to-hidden weights $\{ \mathbf{W}_{hh}^{(1)}, \mathbf{W}_{hh}^{(2)}, \dots, \mathbf{W}_{hh}^{(8)} \}$
  • bias_ih: Input-to-hidden biases (if use_bias=true) $\{ \mathbf{b}_{ih}^{(1)}, \mathbf{b}_{ih}^{(2)}, \dots, \mathbf{b}_{ih}^{(8)} \}$
  • bias_hh: Hidden-to-hidden biases (if use_bias=true) $\{ \mathbf{b}_{hh}^{(1)}, \mathbf{b}_{hh}^{(2)}, \dots, \mathbf{b}_{hh}^{(8)} \}$
  • hidden_state: Initial hidden state vector (not present if train_state=false)
  • memory: Initial memory vector (not present if train_memory=false)

States

  • rng: Controls the randomness (if any) in the initial state generation
source