LiGRUCell
LuxRecurrentLayers.LiGRUCell — TypeLiGRUCell(in_dims => out_dims, [activation];
use_bias=true, use_recurrent_bias=true, train_state=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32)Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}_{ih}^{z} \mathbf{x}(t) + \mathbf{b}_{ih}^{z} + \mathbf{W}_{hh}^{z} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \text{ReLU}\left( \mathbf{W}_{ih}^{h} \mathbf{x}(t) + \mathbf{b}_{ih}^{h} + \mathbf{W}_{hh}^{h} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{h} \right), \\ \mathbf{h}(t) &= \mathbf{z}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{z}(t)\right) \circ \tilde{\mathbf{h}}(t) \end{aligned}\]
Arguments
in_dims: Input Dimensionout_dims: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias: Flag to use bias $\mathbf{b}_{ih}$ in the computation. Default set totrue.use_recurrent_bias: Flag to use recurrent bias $\mathbf{b}_{hh}$ in the computation. Default set totrue.train_state: Flag to set the initial hidden state as trainable. Default set tofalse.init_bias: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{h}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing, each bias is initialized from a uniform distribution within[-bound, bound]wherebound = inv(sqrt(out_dims)). Default isnothing.init_recurrent_bias: Initializer for hidden-to-hidden biases $\mathbf{b}_{hh}^{z}, \mathbf{b}_{hh}^{h}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing, each bias is initialized from a uniform distribution within[-bound, bound]wherebound = inv(sqrt(out_dims)). Default isnothing.init_weight: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{h}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing, weights are initialized from a uniform distribution within[-bound, bound]wherebound = inv(sqrt(out_dims)). Default isnothing.init_recurrent_weight: Initializer for hidden-to-hidden weights $\mathbf{W}_{hh}^{z}, \mathbf{W}_{hh}^{h}$. Must be a tuple of 2 functions. If a single function is passed, it is expanded to 2 copies. If set tonothing, weights are initialized from a uniform distribution within[-bound, bound]wherebound = inv(sqrt(out_dims)). Default isnothing.init_state: Initializer for hidden state. Default set tozeros32.
Inputs
- Case 1a: Only a single input
xof shape(in_dims, batch_size),train_stateis set tofalse- Creates a hidden state usinginit_stateand proceeds to Case 2. - Case 1b: Only a single input
xof shape(in_dims, batch_size),train_stateis set totrue- Repeatshidden_statefrom parameters to match the shape ofxand proceeds to Case 2. - Case 2: Tuple
(x, (h, ))is provided, then the output and a tuple containing the updated hidden state is returned.
Returns
Tuple containing
- Output $h_{new}$ of shape
(out_dims, batch_size) - Tuple containing new hidden state $h_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih: Input-to-hidden weights $\{ \mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{h} \}$ The functions frominit_weightare applied in order: the first initializes $\mathbf{W}_{ih}^{z}$, the second $\mathbf{W}_{ih}^{h}$.weight_hh: Hidden-to-hidden weights $\{ \mathbf{W}_{hh}^{z}, \mathbf{W}_{hh}^{h} \}$ The functions frominit_recurrent_weightare applied in order: the first initializes $\mathbf{W}_{hh}^{z}$, the second $\mathbf{W}_{hh}^{h}$.bias_ih: Input-to-hidden biases (ifuse_bias=true) $\{ \mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{h} \}$ The functions frominit_biasare applied in order: the first initializes $\mathbf{b}_{ih}^{z}$, the second $\mathbf{b}_{ih}^{h}$.bias_hh: Hidden-to-hidden biases (ifuse_bias=true) $\{ \mathbf{b}_{hh}^{z}, \mathbf{b}_{hh}^{h} \}$ The functions frominit_recurrent_biasare applied in order: the first initializes $\mathbf{b}_{hh}^{z}$, the second $\mathbf{b}_{hh}^{h}$.hidden_state: Initial hidden state vector (not present iftrain_state=false)
States
rng: Controls the randomness (if any) in the initial state generation