STARCell
LuxRecurrentLayers.STARCell — TypeSTARCell(in_dims => out_dims;
use_bias=true, use_recurrent_bias=true, train_state=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32)Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left(\mathbf{W}_{ih}^{z} \mathbf{x}(t) + \mathbf{b}_{ih}^{z}\right), \\ \mathbf{k}(t) &= \sigma\left(\mathbf{W}_{ih}^{k} \mathbf{x}(t) + \mathbf{b}_{ih}^{k} + \mathbf{W}_{hh}^{k} \mathbf{h}(t-1) + \mathbf{b}_{hh}^{k}\right), \\ \mathbf{h}(t) &= \tanh\left((1 - \mathbf{k}(t)) \circ \mathbf{h}(t-1) + \mathbf{k}(t) \circ \mathbf{z}(t)\right). \end{aligned}\]
Arguments
in_dims: Input Dimensionout_dims: Output (Hidden State & Memory) Dimension
Keyword arguments
use_bias: Flag to use bias $\mathbf{b}_{ih}$ in the computation. Default set totrue.use_recurrent_bias: Flag to use recurrent bias $\mathbf{b}_{hh}$ in the computation. Default set totrue.train_state: Flag to set the initial hidden state as trainable. Default set tofalse.train_memory: Flag to set the initial memory state as trainable. Default set tofalse.init_bias: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{k}$. Must be a tuple containing 2 functions. If a single value is passed, it is copied into a 2-element tuple. If set tonothing, biases are initialized from a uniform distribution within[-bound, bound], wherebound = inv(sqrt(out_dims)). The functions are applied in order: the first initializes $\mathbf{b}_{ih}^{z}$, the second $\mathbf{b}_{ih}^{k}$. Default set tonothing.init_recurrent_bias: Initializer for hidden-to-hidden bias $\mathbf{b}_{hh}^{k}$. Must be a single function. If set tonothing, bias is initialized from a uniform distribution within[-bound, bound], wherebound = inv(sqrt(out_dims)). Default set tonothing.init_weight: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{k}$. Must be a tuple containing 2 functions. If a single value is passed, it is copied into a 2-element tuple. If set tonothing, weights are initialized from a uniform distribution within[-bound, bound], wherebound = inv(sqrt(out_dims)). The functions are applied in order: the first initializes $\mathbf{W}_{ih}^{z}$, the second $\mathbf{W}_{ih}^{k}$. Default set tonothing.init_recurrent_weight: Initializer for hidden-to-hidden weight $\mathbf{W}_{hh}^{k}$. Must be a single function. If set tonothing, weight is initialized from a uniform distribution within[-bound, bound], wherebound = inv(sqrt(out_dims)). Default set tonothing.init_state: Initializer for hidden state. Default set tozeros32.init_memory: Initializer for memory. Default set tozeros32.
Inputs
- Case 1a: Only a single input
xof shape(in_dims, batch_size),train_stateis set tofalse- Creates a hidden state usinginit_stateand proceeds to Case 2. - Case 1b: Only a single input
xof shape(in_dims, batch_size),train_stateis set totrue- Repeatshidden_statefrom parameters to match the shape ofxand proceeds to Case 2. - Case 2: Tuple
(x, (h, ))is provided, then the output and a tuple containing the updated hidden state is returned.
Returns
Tuple containing
- Output $h_{new}$ of shape
(out_dims, batch_size) - Tuple containing new hidden state $h_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih: Input-to-hidden weights $\{ \mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{k} \}$weight_hh: Hidden-to-hidden weights $\{ \mathbf{W}_{hh}^{k} \}$bias_ih: Input-to-hidden biases (not present ifuse_bias=false) $\{ \mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{k} \}$bias_hh: Hidden-to-hidden bias (not present ifuse_bias=false) $\{ \mathbf{b}_{hh}^{k} \}$hidden_state: Initial hidden state vector (not present iftrain_state=false)
States
rng: Controls the randomness (if any) in the initial state generation