TGRUCell
LuxRecurrentLayers.TGRUCell — TypeTGRUCell(in_dims => out_dims;
use_bias=true, use_recurrent_bias=true,
train_state=false, train_memory=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32, init_memory=zeros32)Strongly typed gated recurrent unit.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{W}_{ih}^{z} \, \mathbf{x}(t) + \mathbf{b}_{ih}^{z} + \mathbf{W}_{mh}^{z} \, \mathbf{x}(t-1) + \mathbf{b}_{mh}^{z}, \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}_{ih}^{f} \, \mathbf{x}(t) + \mathbf{b}_{ih}^{f} + \mathbf{W}_{mh}^{f} \, \mathbf{x}(t-1) + \mathbf{b}_{mh}^{f} \right), \\ \mathbf{o}(t) &= \tau\left( \mathbf{W}_{ih}^{o} \, \mathbf{x}(t) + \mathbf{b}_{ih}^{o} + \mathbf{W}_{mh}^{o} \, \mathbf{x}(t-1) + \mathbf{b}_{mh}^{o} \right), \\ \mathbf{h}(t) &= \mathbf{f}(t) \circ \mathbf{h}(t-1) + \mathbf{z}(t) \circ \mathbf{o}(t) \end{aligned}\]
Arguments
in_dims: Input Dimensionout_dims: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias: Flag to use bias $\mathbf{b}_{ih}$ in the computation. Default set totrue.use_recurrent_bias: Flag to use recurrent bias $\mathbf{b}_{hh}$ in the computation. Default set totrue.train_state: Flag to set the initial hidden state as trainable. Default set tofalse.train_memory: Flag to set the initial memory state as trainable. Default set tofalse.init_bias: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{f}, \mathbf{b}_{ih}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing, biases are initialized from a uniform distribution within[-bound, bound], wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}}). The functions are applied in order: the first initializes $\mathbf{b}_{ih}^{z}$, then $\mathbf{b}_{ih}^{f}$, and $\mathbf{b}_{ih}^{o}$. Default set tonothing.init_recurrent_bias: Initializer for hidden-to-hidden biases $\mathbf{b}_{mh}^{z}, \mathbf{b}_{mh}^{f}, \mathbf{b}_{mh}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing, biases are initialized from a uniform distribution within[-bound, bound], wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}}). Default set tonothing.init_weight: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{f}, \mathbf{W}_{ih}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing, weights are initialized from a uniform distribution within[-bound, bound], wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}}). The functions are applied in order: the first initializes $\mathbf{W}_{ih}^{z}$, then $\mathbf{W}_{ih}^{f}$, and $\mathbf{W}_{ih}^{o}$. Default set tonothing.init_recurrent_weight: Initializer for hidden-to-hidden weights $\mathbf{W}_{mh}^{z}, \mathbf{W}_{mh}^{f}, \mathbf{W}_{mh}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing, weights are initialized from a uniform distribution within[-bound, bound], wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}}). Default set tonothing.init_state: Initializer for hidden state. Default set tozeros32.init_memory: Initializer for memory. Default set tozeros32.
Inputs
- Case 1a: Only a single input
xof shape(in_dims, batch_size),train_stateis set tofalse,train_memoryis set tofalse- Creates a hidden state usinginit_state, hidden memory usinginit_memoryand proceeds to Case 2. - Case 1b: Only a single input
xof shape(in_dims, batch_size),train_stateis set totrue,train_memoryis set tofalse- Repeatshidden_statevector from the parameters to match the shape ofx, creates hidden memory usinginit_memoryand proceeds to Case 2. - Case 1c: Only a single input
xof shape(in_dims, batch_size),train_stateis set tofalse,train_memoryis set totrue- Creates a hidden state usinginit_state, repeats the memory vector from parameters to match the shape ofxand proceeds to Case 2. - Case 1d: Only a single input
xof shape(in_dims, batch_size),train_stateis set totrue,train_memoryis set totrue- Repeats the hidden state and memory vectors from the parameters to match the shape ofxand proceeds to Case 2. - Case 2: Tuple
(x, (h, c))is provided, then the output and a tuple containing the updated hidden state and memory is returned.
Returns
Tuple Containing
- Output $h_{new}$ of shape
(out_dims, batch_size) - Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih: Concatenated weights for input-to-hidden transformations $\{ \mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{f}, \mathbf{W}_{ih}^{o} \}$.weight_hh: Concatenated weights for hidden-to-hidden transformations $\{ \mathbf{W}_{mh}^{z}, \mathbf{W}_{mh}^{f}, \mathbf{W}_{mh}^{o} \}$.bias_ih: Input-to-hidden bias vector $\{ \mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{f}, \mathbf{b}_{ih}^{o} \}$. (not present ifuse_bias=false).bias_hh: Hidden-to-hidden bias vector $\{ \mathbf{b}_{mh}^{z}, \mathbf{b}_{mh}^{f}, \mathbf{b}_{mh}^{o} \}$. (not present ifuse_bias=false).hidden_state: Initial hidden state vector (not present iftrain_state=false).memory: Initial memory vector (not present iftrain_memory=false).
States
rng: Controls the randomness (if any) in the initial state generation