TLSTMCell
LuxRecurrentLayers.TLSTMCell
— TypeTLSTMCell(in_dims => out_dims;
use_bias=true, use_recurrent_bias=true,
train_state=false, train_memory=false,
init_bias=nothing, init_recurrent_bias=nothing,
init_weight=nothing, init_recurrent_weight=nothing,
init_state=zeros32, init_memory=zeros32)
Strongly typed long short term memory cell.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{W}_{mh}^{z} \mathbf{x}(t{-}1) + \mathbf{b}_{mh}^{z} + \mathbf{W}_{ih}^{z} \mathbf{x}(t) + \mathbf{b}_{ih}^{z} \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}_{mh}^{f} \mathbf{x}(t{-}1) + \mathbf{b}_{mh}^{f} + \mathbf{W}_{ih}^{f} \mathbf{x}(t) + \mathbf{b}_{ih}^{f} \right) \\ \mathbf{o}(t) &= \tau\left( \mathbf{W}_{mh}^{o} \mathbf{x}(t{-}1) + \mathbf{b}_{mh}^{o} + \mathbf{W}_{ih}^{o} \mathbf{x}(t) + \mathbf{b}_{ih}^{o} \right) \\ \mathbf{c}(t) &= \mathbf{f}(t) \circ \mathbf{c}(t{-}1) + \left(1 - \mathbf{f}(t)\right) \circ \mathbf{z}(t) \\ \mathbf{h}(t) &= \mathbf{c}(t) \circ \mathbf{o}(t) \end{aligned}\]
Arguments
in_dims
: Input Dimensionout_dims
: Output (Hidden State & Memory) Dimension
Keyword Arguments
use_bias
: Flag to use bias $\mathbf{b}_{ih}$ in the computation. Default set totrue
.use_recurrent_bias
: Flag to use recurrent bias $\mathbf{b}_{hh}$ in the computation. Default set totrue
.train_state
: Flag to set the initial hidden state as trainable. Default set tofalse
.train_memory
: Flag to set the initial memory state as trainable. Default set tofalse
.init_bias
: Initializer for input-to-hidden biases $\mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{f}, \mathbf{b}_{ih}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing
, biases are initialized from a uniform distribution within[-bound, bound]
, wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}})
. The functions are applied in order to initialize $\mathbf{b}_{ih}^{z}$, $\mathbf{b}_{ih}^{f}$, \mathbf{b}_{ih}^{o}$. Default set tonothing
.init_recurrent_bias
: Initializer for memory-to-hidden biases $\mathbf{b}_{mh}^{z}, \mathbf{b}_{mh}^{f}, \mathbf{b}_{mh}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing
, biases are initialized from a uniform distribution within[-bound, bound]
, wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}})
. The functions are applied in order to initialize $\mathbf{b}_{mh}^{z}$, $\mathbf{b}_{mh}^{f}$, \mathbf{b}_{mh}^{o}$. Default set tonothing
.init_weight
: Initializer for input-to-hidden weights $\mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{f}, \mathbf{W}_{ih}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
, wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}})
. The functions are applied in order to initialize $\mathbf{W}_{ih}^{z}$, $\mathbf{W}_{ih}^{f}$, \mathbf{W}_{ih}^{o}$. Default set tonothing
.init_recurrent_weight
: Initializer for memory-to-hidden weights $\mathbf{W}_{mh}^{z}, \mathbf{W}_{mh}^{f}, \mathbf{W}_{mh}^{o}$. Must be a tuple containing 3 functions. If a single value is passed, it is copied into a 3-element tuple. If set tonothing
, weights are initialized from a uniform distribution within[-bound, bound]
, wherebound = \mathrm{inv}(\sqrt{\mathrm{out\_dims}})
. The functions are applied in order to initialize $\mathbf{W}_{mh}^{z}$, $\mathbf{W}_{mh}^{f}$, \mathbf{W}_{mh}^{o}$. Default set tonothing
.init_state
: Initializer for hidden state. Default set tozeros32
.init_memory
: Initializer for memory. Default set tozeros32
.
Inputs
- Case 1a: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set tofalse
- Creates a hidden state usinginit_state
, hidden memory usinginit_memory
and proceeds to Case 2. - Case 1b: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set tofalse
- Repeatshidden_state
vector from the parameters to match the shape ofx
, creates hidden memory usinginit_memory
and proceeds to Case 2. - Case 1c: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set tofalse
,train_memory
is set totrue
- Creates a hidden state usinginit_state
, repeats the memory vector from parameters to match the shape ofx
and proceeds to Case 2. - Case 1d: Only a single input
x
of shape(in_dims, batch_size)
,train_state
is set totrue
,train_memory
is set totrue
- Repeats the hidden state and memory vectors from the parameters to match the shape ofx
and proceeds to Case 2. - Case 2: Tuple
(x, (h, c))
is provided, then the output and a tuple containing the updated hidden state and memory is returned.
Returns
Tuple Containing
- Output $h_{new}$ of shape
(out_dims, batch_size)
- Tuple containing new hidden state $h_{new}$ and new memory $c_{new}$
- Output $h_{new}$ of shape
Updated model state
Parameters
weight_ih
: Concatenated weights for input-to-hidden transformations $\{ \mathbf{W}_{ih}^{z}, \mathbf{W}_{ih}^{f}, \mathbf{W}_{ih}^{o} \}$.weight_mh
: Concatenated weights for memory-to-hidden transformations $\{ \mathbf{W}_{mh}^{z}, \mathbf{W}_{mh}^{f}, \mathbf{W}_{mh}^{o} \}$.bias_ih
: Concatenated bias vector for input-to-hidden transformations $\{ \mathbf{b}_{ih}^{z}, \mathbf{b}_{ih}^{f}, \mathbf{b}_{ih}^{o} \}$. Not present ifuse_bias = false
.bias_mh
: Concatenated bias vector for memory-to-hidden transformations $\{ \mathbf{b}_{mh}^{z}, \mathbf{b}_{mh}^{f}, \mathbf{b}_{mh}^{o} \}$. Not present ifuse_bias = false
.hidden_state
: Initial hidden state vector. Not present iftrain_state = false
.memory
: Initial memory state vector. Not present iftrain_memory = false
.
States
rng
: Controls the randomness (if any) in the initial state generation