BRCell
RecurrentLayers.BRCell
— TypeBRCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform
bias = true, recurrent_bias = true,
independent_recurrence = false, integration_mode = :addition)
Bistable recurrent cell (Vecoven et al., 2021). See BR
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.recurrent_bias
: include recurrent to recurrent bias or not. Default istrue
.independent_recurrence
: hard-coded totrue
in this architecture. For the architecture without independent recurrence plese refer toNBRCell
integration_mode
: determines how the input and hidden projections are combined. The options are:addition
and:multiplicative_integration
. Defaults to:addition
.
Equations
\[\begin{aligned} \mathbf{a}(t) &= 1 + \tanh\left( \mathbf{W}^{a}_{ih} \mathbf{x}(t) + \mathbf{w}^{a} \circ \mathbf{h}(t-1) + \mathbf{b}^{a} \right), \\ \mathbf{c}(t) &= \sigma\left( \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{w}^{c} \circ \mathbf{h}(t-1) + \mathbf{b}^{c} \right), \\ \mathbf{h}(t) &= \mathbf{c}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{c}(t)\right) \circ \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{a}(t) \circ \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \end{aligned}\]
Forward
brcell(inp, state)
brcell(inp)
Arguments
inp
: The input to the brcell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the BRCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.