RAN
RecurrentLayers.RAN — TypeRAN(input_size => hidden_size;
return_state = false, kwargs...)Recurrent Additive Network cell (Lee et al., 2017). See RANCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.return_state: Option to return the last state together with the output. Default isfalse.
Equations
\[\begin{aligned} \tilde{\mathbf{c}}(t) &= \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{i} \right) \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{f} \right) \\ \mathbf{c}(t) &= \mathbf{i}(t) \odot \tilde{\mathbf{c}}(t) + \mathbf{f}(t) \odot \mathbf{c}(t-1) \\ \mathbf{h}(t) &= g\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
ran(inp, (state, cstate))
ran(inp)Arguments
inp: The input to the ran. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.(state, cstate): A tuple containing the hidden and cell states of the RAN. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.