Wrappers
RecurrentLayers.StackedRNN
— TypeStackedRNN(rlayer, (input_size, hidden_size), args...;
num_layers = 1, dropout = 0.0, kwargs...)
Constructs a stack of recurrent layers given the recurrent layer type.
Arguments:
rlayer
: Any recurrent layer such as MGU, RHN, etc... orFlux.RNN
,Flux.LSTM
, etc.input_size
: Defines the input dimension for the first layer.hidden_size
: defines the dimension of the hidden layer.num_layers
: The number of layers to stack. Default is 1.dropout
: Value of dropout to apply between recurrent layers. Default is 0.0.args...
: Additional positional arguments passed to the recurrent layer.
Keyword arguments
kwargs...
: Additional keyword arguments passed to the recurrent layers.
Examples
julia> using RecurrentLayers
julia> stac_rnn = StackedRNN(MGU, (3=>5); num_layers = 4)
StackedRNN(
[
MGU(3 => 10), # 90 parameters
MGU(5 => 10), # 110 parameters
MGU(5 => 10), # 110 parameters
MGU(5 => 10), # 110 parameters
],
) # Total: 12 trainable arrays, 420 parameters,
# plus 4 non-trainable, 20 parameters, summarysize 2.711 KiB.