ATRCell

RecurrentLayers.ATRCellType
ATRCell(input_size => hidden_size;
    init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform)

Addition-subtraction twin-gated recurrent cell [Zhang2018]. See ATR for a layer that processes entire sequences.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[\begin{aligned} \mathbf{p}(t) &= \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b}, \\ \mathbf{q}(t) &= \mathbf{W}_{hh} \mathbf{h}(t-1), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{p}(t) + \mathbf{q}(t) \right), \\ \mathbf{f}(t) &= \sigma\left( \mathbf{p}(t) - \mathbf{q}(t) \right), \\ \mathbf{h}(t) &= \mathbf{i}(t) \circ \mathbf{p}(t) + \mathbf{f}(t) \circ \mathbf{h}(t-1). \end{aligned} \]

Forward

atrcell(inp, state)
atrcell(inp)

Arguments

  • inp: The input to the atrcell. It should be a vector of size input_size or a matrix of size input_size x batch_size.
  • state: The hidden state of the ATRCell. It should be a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • A tuple (output, state), where both elements are given by the updated state new_state, a tensor of size hidden_size or hidden_size x batch_size.
source
  • Zhang2018Zhang, B. et al. Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Recurrent Networks EMNLP 2018.