CFNCell
RecurrentLayers.CFNCell
— TypeCFNCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Chaos free network unit [Laurent2017]. See CFN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{h}(t) &= \boldsymbol{\theta}(t) \odot \tanh\left( \mathbf{h}(t-1) \right) + \boldsymbol{\eta}(t) \odot \tanh\left( \mathbf{W}_{ih} \mathbf{x}(t) \right), \\ \boldsymbol{\theta}(t) &= \sigma\left( \mathbf{W}^{\theta}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{\theta}_{ih} \mathbf{x}(t) + \mathbf{b}^{\theta} \right), \\ \boldsymbol{\eta}(t) &= \sigma\left( \mathbf{W}^{\eta}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{\eta}_{ih} \mathbf{x}(t) + \mathbf{b}^{\eta} \right). \end{aligned}\]
Forward
cfncell(inp, state)
cfncell(inp)
Arguments
inp
: The input to the cfncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the CFNCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Laurent2017Laurent, T. et al. A recurrent neural network without chaos ICLR 2017.