coRNNCell
RecurrentLayers.coRNNCell
— TypecoRNNCell(input_size => hidden_size, [dt];
gamma=0.0, epsilon=0.0,
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Coupled oscillatory recurrent neural unit [Rusch2021]. See coRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.dt
: time step. Default is 1.0.
Keyword arguments
gamma
: damping for state. Default is 0.0.epsilon
: damping for candidate state. Default is 0.0.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{z}(t-1) + \Delta t \, \sigma \left( \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{W}_{zh} \mathbf{z}(t-1) + \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b} \right) - \Delta t \, \gamma \mathbf{h}(t-1) - \Delta t \, \epsilon \mathbf{z}(t), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \Delta t \, \mathbf{z}(t), \end{aligned}\]
Forward
cornncell(inp, (state, cstate))
cornncell(inp)
Arguments
inp
: The input to the cornncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the coRNNCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Rusch2021Rusch, T. K. et al. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies ICLR 2021.