FastGRNNCell
RecurrentLayers.FastGRNNCell — TypeFastGRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, recurrent_bias = true, alt_bias=true,
independent_recurrence = false, integration_mode = :addition)Fast gated recurrent neural network cell (Kusupati et al., 2018). See FastGRNN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.activation: the activation function, defaults totanh_fast.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.init_zeta: Initializer for the zeta parameter. Default is 1.0.init_nu: Initializer for the nu parameter. Default is - 4.0.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.alt_bias: include different bias for the two gates. Default istrueindependent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \left( \left( \sigma(\zeta) (1 - \mathbf{z}(t)) + 'sigma(\nu) \right) \odot \tilde{\mathbf{h}}(t) \right) + \mathbf{z}(t) \odot \mathbf{h}(t-1) \end{aligned}\]
Forward
fastgrnncell(inp, state)
fastgrnncell(inp)Arguments
inp: The input to the fastgrnncell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.state: The hidden state of the FastGRNN. It should be a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), where both elements are given by the updated statenew_state, a tensor of sizehidden_sizeorhidden_size x batch_size.