FastGRNNCell
RecurrentLayers.FastGRNNCell
— TypeFastGRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Fast gated recurrent neural network cell [Kusupati2018]. See FastGRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: the activation function, defaults totanh_fast
.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.init_zeta
: Initializer for the zeta parameter. Default is 1.0.init_nu
: Initializer for the nu parameter. Default is - 4.0.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \left( \left( \zeta (1 - \mathbf{z}(t)) + \nu \right) \odot \tilde{\mathbf{h}}(t) \right) + \mathbf{z}(t) \odot \mathbf{h}(t-1) \end{aligned}\]
Forward
fastgrnncell(inp, state)
fastgrnncell(inp)
Arguments
inp
: The input to the fastgrnncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the FastGRNN. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Kusupati2018Kusupati, A. et al. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. NeurIPS 2018.