GatedAntisymmetricRNNCell
RecurrentLayers.GatedAntisymmetricRNNCell — TypeGatedAntisymmetricRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
independent_recurrence = false, integration_mode = :addition,
bias = true, recurrent_bias = true,
epsilon=1.0, gamma = 0.0)Antisymmetric recurrent cell with gating (Chang et al., 2019). See GatedAntisymmetricRNN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include a bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.epsilon: step size. Default is 1.0.gamma: strength of diffusion. Default is 0.0.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \epsilon \, \mathbf{z}(t) \odot \tanh\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right). \end{aligned}\]
Forward
asymrnncell(inp, state)
asymrnncell(inp)Arguments
inp: The input to the asymrnncell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.state: The hidden state of the GatedAntisymmetricRNNCell. It should be a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), where both elements are given by the updated statenew_state, a tensor of sizehidden_sizeorhidden_size x batch_size.