GatedAntisymmetricRNNCell
RecurrentLayers.GatedAntisymmetricRNNCell
— TypeGatedAntisymmetricRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, epsilon=1.0)
Antisymmetric recurrent cell with gating [Chang2019]. See GatedAntisymmetricRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.epsilon
: step size. Default is 1.0.gamma
: strength of diffusion. Default is 0.0.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \epsilon \, \mathbf{z}(t) \odot \tanh\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right). \end{aligned}\]
Forward
asymrnncell(inp, state)
asymrnncell(inp)
Arguments
inp
: The input to the asymrnncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the GatedAntisymmetricRNNCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Chang2019Chang, B. et al. AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks. ICLR 2019.