IndRNNCell

RecurrentLayers.IndRNNCellType
IndRNNCell(input_size => hidden_size, [activation];
    init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform,
    bias = true)

Independently recurrent cell [Li2018]. See IndRNN for a layer that processes entire sequences.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.
  • activation: activation function. Default is tanh.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[ \mathbf{h}(t) = \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{u} \odot \mathbf{h}(t-1) + \mathbf{b} \right)\]

Forward

indrnncell(inp, state)
indrnncell(inp)

Arguments

  • inp: The input to the indrnncell. It should be a vector of size input_size or a matrix of size input_size x batch_size.
  • state: The hidden state of the IndRNNCell. It should be a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • A tuple (output, state), where both elements are given by the updated state new_state, a tensor of size hidden_size or hidden_size x batch_size.
source
  • Li2018Li, S. et al. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. CVPR 2018.