IndRNNCell
RecurrentLayers.IndRNNCell
— TypeIndRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Independently recurrent cell [Li2018]. See IndRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: activation function. Default istanh
.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[ \mathbf{h}(t) = \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{u} \odot \mathbf{h}(t-1) + \mathbf{b} \right)\]
Forward
indrnncell(inp, state)
indrnncell(inp)
Arguments
inp
: The input to the indrnncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the IndRNNCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Li2018Li, S. et al. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. CVPR 2018.