IndRNNCell
RecurrentLayers.IndRNNCell — TypeIndRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, recurrent_bias = true,
independent_recurrence = true, integration_mode = :addition)Independently recurrent cell (Li et al., Jun 2018). See IndRNN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.activation: activation function. Default istanh.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaulttrue.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[ \mathbf{h}(t) = \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{u} \odot \mathbf{h}(t-1) + \mathbf{b} \right)\]
Forward
indrnncell(inp, state)
indrnncell(inp)Arguments
inp: The input to the indrnncell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.state: The hidden state of the IndRNNCell. It should be a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), where both elements are given by the updated statenew_state, a tensor of sizehidden_sizeorhidden_size x batch_size.