JANETCell
RecurrentLayers.JANETCell
— TypeJANETCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, beta_value=1.0)
Just another network unit [Westhuizen2018]. See JANET
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.beta_value
: control over the input data flow. Default is 1.0.
Equations
\[\begin{aligned} \mathbf{s}(t) &= \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{b}^{f}, \\ \tilde{\mathbf{c}}(t) &= \tanh\left( \mathbf{W}^{c}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \right), \\ \mathbf{c}(t) &= \sigma\left( \mathbf{s}(t) \right) \odot \mathbf{c}(t-1) + \left( 1 - \sigma\left( \mathbf{s}(t) - \beta \right) \right) \odot \tilde{\mathbf{c}}(t), \\ \mathbf{h}(t) &= \mathbf{c}(t). \end{aligned}\]
Forward
janetcell(inp, (state, cstate))
janetcell(inp)
Arguments
inp
: The input to the rancell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the RANCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Westhuizen2018van der Westhuizen, J. et al. The unreasonable effectiveness of the forget gate arXiv 2018.