LEMCell
RecurrentLayers.LEMCell
— TypeLEMCell(input_size => hidden_size, [dt];
init_kernel = glorot_uniform, init_recurrent_kernel = glorot_uniform,
bias = true)
Long expressive memory unit [Rusch2022]. See LEM
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.dt
: timestep. Defaul is 1.0.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \boldsymbol{\Delta t}(t) &= \Delta \hat{t} \, \hat{\sigma} \left( \mathbf{W}^{1}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{1}_{ih} \mathbf{x}(t) + \mathbf{b}^{1} \right), \\ \overline{\boldsymbol{\Delta t}}(t) &= \Delta \hat{t} \, \hat{\sigma} \left( \mathbf{W}^{2}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{2}_{ih} \mathbf{x}(t) + \mathbf{b}^{2} \right), \\ \mathbf{z}(t) &= \left( 1 - \boldsymbol{\Delta t}(t) \right) \odot \mathbf{z}(t-1) + \boldsymbol{\Delta t}(t) \odot \sigma \left( \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \left( 1 - \boldsymbol{\Delta t}(t) \right) \odot \mathbf{h}(t-1) + \boldsymbol{\Delta t}(t) \odot \sigma \left( \mathbf{W}^{h}_{zh} \mathbf{z}(t) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right) \end{aligned}\]
Forward
lemcell(inp, (state, cstate))
lemcell(inp)
Arguments
inp
: The input to the lemcell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the RANCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Rusch2022Rusch, T. K. et al. Long Expressive Memory for Sequence Modeling. ICLR 2022.