LightRUCell
RecurrentLayers.LightRUCell
— TypeLightRUCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Light recurrent unit [Ye2024]. See LightRU
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}_{ih}^{h} \mathbf{x}(t) \right), \\ \mathbf{f}(t) &= \delta\left( \mathbf{W}_{ih}^{f} \mathbf{x}(t) + \mathbf{W}_{hh}^{f} \mathbf{h}(t-1) + \mathbf{b}^{f} \right), \\ \mathbf{h}(t) &= \left( 1 - \mathbf{f}(t) \right) \odot \mathbf{h}(t-1) + \mathbf{f}(t) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]
Forward
lightrucell(inp, state)
lightrucell(inp)
Arguments
inp
: The input to the lightrucell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the LightRUCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Ye2024Ye, H. et al. _ Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency_ MDPI Electronics 2024.