LightRUCell

RecurrentLayers.LightRUCellType
LightRUCell(input_size => hidden_size;
    init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform,
    bias = true)

Light recurrent unit [Ye2024]. See LightRU for a layer that processes entire sequences.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[\begin{aligned} \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}_{ih}^{h} \mathbf{x}(t) \right), \\ \mathbf{f}(t) &= \delta\left( \mathbf{W}_{ih}^{f} \mathbf{x}(t) + \mathbf{W}_{hh}^{f} \mathbf{h}(t-1) + \mathbf{b}^{f} \right), \\ \mathbf{h}(t) &= \left( 1 - \mathbf{f}(t) \right) \odot \mathbf{h}(t-1) + \mathbf{f}(t) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]

Forward

lightrucell(inp, state)
lightrucell(inp)

Arguments

  • inp: The input to the lightrucell. It should be a vector of size input_size or a matrix of size input_size x batch_size.
  • state: The hidden state of the LightRUCell. It should be a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • A tuple (output, state), where both elements are given by the updated state new_state, a tensor of size hidden_size or hidden_size x batch_size.
source
  • Ye2024Ye, H. et al. _ Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency_ MDPI Electronics 2024.