LiGRUCell
RecurrentLayers.LiGRUCell
— TypeLiGRUCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Light gated recurrent unit [Ravanelli2018]. The implementation does not include the batch normalization as described in the original paper. See LiGRU
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \text{ReLU}\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \mathbf{z}(t) \odot \mathbf{h}(t-1) + \left(1 - \mathbf{z}(t)\right) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]
Forward
ligrucell(inp, state)
ligrucell(inp)
Arguments
inp
: The input to the ligrucell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the LiGRUCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Ravanelli2018Ravanelli, M. et al. Light Gated Recurrent Units for Speech Recognition. IEEE Transactions on Emerging Topics in Computing 2018.