MGUCell
RecurrentLayers.MGUCell — TypeMGUCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, recurrent_bias = true,
independent_recurrence = false, integration_mode = :addition)Minimal gated unit (Zhou et al., 2016). See MGU for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{f} \right), \\ \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \left( \mathbf{f}(t) \odot \mathbf{h}(t-1) \right) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \left(1 - \mathbf{f}(t)\right) \odot \mathbf{h}(t-1) + \mathbf{f}(t) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]
Forward
mgucell(inp, state)
mgucell(inp)Arguments
inp: The input to the mgucell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.state: The hidden state of the MGUCell. It should be a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), where both elements are given by the updated statenew_state, a tensor of sizehidden_sizeorhidden_size x batch_size.