MinimalRNNCell
RecurrentLayers.MinimalRNNCell — TypeMinimalRNNCell(input_size => hidden_size;
init_encoder_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
init_memory_kernel = glorot_uniform,
encoder_bias = true, recurrent_bias = true, memory_bias=true,
independent_recurrence = false, integration_mode = :addition)Minimal recurrent neural network unit (Chen, 2017). See MinimalRNN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_encoder_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.init_memory_kernel: initializer for the memory to hidden weights. Default isglorot_uniform.encoder_bias: include a bias in the encoder or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.memory_bias: include memory to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \Phi(\mathbf{x}(t)) = \tanh\left( \mathbf{W}_{xz} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{u}(t) &= \sigma\left( \mathbf{W}_{hh}^{u} \mathbf{h}(t-1) + \mathbf{W}_{zh}^{u} \mathbf{z}(t) + \mathbf{b}^{u} \right), \\ \mathbf{h}(t) &= \mathbf{u}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{u}(t)\right) \circ \mathbf{z}(t) \end{aligned}\]
Forward
minimalrnncell(inp, state)
minimalrnncell(inp)Arguments
inp: The input to the minimalrnncell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.(state, cstate): A tuple containing the hidden and cell states of the MinimalRNNCell. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), whereoutput = new_stateis the new hidden state andstate = (new_state, new_cstate)is the new hidden and cell state. They are tensors of sizehidden_sizeorhidden_size x batch_size.