MUT2Cell
RecurrentLayers.MUT2Cell
— TypeMUT2Cell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Mutated unit 2 cell [Jozefowicz2015]. See MUT2
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t) + \mathbf{b}^{z} \right), \\ \mathbf{r}(t) &= \sigma\left( \mathbf{x}(t) + \mathbf{W}^{r}_{hh} \mathbf{h}(t) + \mathbf{b}^{r} \right), \\ \mathbf{h}(t+1) &= \left[ \tanh\left( \mathbf{W}^{h}_{hh} \left( \mathbf{r}(t) \odot \mathbf{h}(t) \right) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right) \right] \odot \mathbf{z}(t) \\ &\quad + \mathbf{h}(t) \odot \left( 1 - \mathbf{z}(t) \right) \end{aligned}\]
Forward
mutcell(inp, state)
mutcell(inp)
Arguments
inp
: The input to the mutcell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the MUTCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Jozefowicz2015Jozefowicz, R. et al. An Empirical Exploration of Recurrent Network Architectures. ICML 2015.