NASCell
RecurrentLayers.NASCell
— TypeNASCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Neural Architecture Search unit [Zoph2016]. See NAS
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{o}_1 &= \sigma\left( \mathbf{W}^{(1)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(1)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(1)} \right), \\ \mathbf{o}_2 &= \text{ReLU}\left( \mathbf{W}^{(2)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(2)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(2)} \right), \\ \mathbf{o}_3 &= \sigma\left( \mathbf{W}^{(3)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(3)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(3)} \right), \\ \mathbf{o}_4 &= \text{ReLU}\left( \mathbf{W}^{(4)}_{ih} \mathbf{x}(t) \cdot \mathbf{W}^{(4)}_{hh} \mathbf{h}(t-1) \right), \\ \mathbf{o}_5 &= \tanh\left( \mathbf{W}^{(5)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(5)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(5)} \right), \\ \mathbf{o}_6 &= \sigma\left( \mathbf{W}^{(6)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(6)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(6)} \right), \\ \mathbf{o}_7 &= \tanh\left( \mathbf{W}^{(7)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(7)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(7)} \right), \\ \mathbf{o}_8 &= \sigma\left( \mathbf{W}^{(8)}_{ih} \mathbf{x}(t) + \mathbf{W}^{(8)}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{(8)} \right), \\[1ex] \mathbf{l}_1 &= \tanh\left( \mathbf{o}_1 \cdot \mathbf{o}_2 \right), \\ \mathbf{l}_2 &= \tanh\left( \mathbf{o}_3 + \mathbf{o}_4 \right), \\ \mathbf{l}_3 &= \tanh\left( \mathbf{o}_5 \cdot \mathbf{o}_6 \right), \\ \mathbf{l}_4 &= \sigma\left( \mathbf{o}_7 + \mathbf{o}_8 \right), \\[1ex] \mathbf{l}_1 &= \tanh\left( \mathbf{l}_1 + \mathbf{c}_{\text{state}} \right), \\[1ex] \mathbf{c}_{\text{new}} &= \mathbf{l}_1 \cdot \mathbf{l}_2, \\ \mathbf{l}_5 &= \tanh\left( \mathbf{l}_3 + \mathbf{l}_4 \right), \\ \mathbf{h}_{\text{new}} &= \tanh\left( \mathbf{c}_{\text{new}} \cdot \mathbf{l}_5 \right) \end{aligned}\]
Forward
nascell(inp, (state, cstate))
nascell(inp)
Arguments
inp
: The input to the nascell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the NASCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Zoph2016Zoph, B. et al. Neural Architecture Search with Reinforcement Learning. arXiv 2016.