PeepholeLSTMCell
RecurrentLayers.PeepholeLSTMCell
— TypePeepholeLSTMCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
init_peephole_kernel = glorot_uniform,
bias = true)
Peephole long short term memory cell [Gers2002]. See PeepholeLSTM
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.init_peephole_kernel
: initializer for the hidden to peephole weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{i}_{ph} \odot \mathbf{c}(t-1) + \mathbf{b}^{i} \right), \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{f}_{ph} \odot \mathbf{c}(t-1) + \mathbf{b}^{f} \right), \\ \mathbf{c}(t) &= \mathbf{f}(t) \odot \mathbf{c}(t-1) + \mathbf{i}(t) \odot \mathbf{z}(t), \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \mathbf{w}^{o}_{ph} \odot \mathbf{c}(t) + \mathbf{b}^{o} \right), \\ \mathbf{h}(t) &= \mathbf{o}(t) \odot \tanh\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
peepholelstmcell(inp, (state, cstate))
peepholelstmcell(inp)
Arguments
inp
: The input to the peepholelstmcell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the PeepholeLSTMCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Gers2002Gers, F. A. et al. Learning precise timing with LSTM recurrent networks. JMLR 2002.