RANCell
RecurrentLayers.RANCell — TypeRANCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, recurrent_bias = true,
independent_recurrence = false, integration_mode = :addition)Recurrent Additive Network cell (Lee et al., 2017). See RAN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \tilde{\mathbf{c}}(t) &= \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c}, \\ \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{i} \right), \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{f} \right), \\ \mathbf{c}(t) &= \mathbf{i}(t) \odot \tilde{\mathbf{c}}(t) + \mathbf{f}(t) \odot \mathbf{c}(t-1), \\ \mathbf{h}(t) &= g\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
rancell(inp, (state, cstate))
rancell(inp)Arguments
inp: The input to the rancell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.(state, cstate): A tuple containing the hidden and cell states of the RANCell. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), whereoutput = new_stateis the new hidden state andstate = (new_state, new_cstate)is the new hidden and cell state. They are tensors of sizehidden_sizeorhidden_size x batch_size.