SCRNCell
RecurrentLayers.SCRNCell
— TypeSCRNCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, alpha = 0.0)
Structurally contraint recurrent unit [Mikolov2015]. See SCRN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.alpha
: structural contraint. Default is 0.0.
Equations
\[\begin{aligned} \mathbf{s}(t) &= (1 - \alpha) \, \mathbf{W}_{ih}^{s} \mathbf{x}(t) + \alpha \, \mathbf{s}(t-1) \\ \mathbf{h}(t) &= \sigma\left( \mathbf{W}_{ih}^{h} \mathbf{s}(t) + \mathbf{W}_{hh}^{h} \mathbf{h}(t-1) + \mathbf{b}^{h} \right) \\ \mathbf{y}(t) &= f\left( \mathbf{W}_{hh}^{y} \mathbf{h}(t) + \mathbf{W}_{ih}^{y} \mathbf{s}(t) + \mathbf{b}^{y} \right) \end{aligned}\]
Forward
scrncell(inp, (state, cstate))
scrncell(inp)
Arguments
inp
: The input to the scrncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the SCRNCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Mikolov2015Mikolov, T. et al. Learning longer memory in recurrent neural networks. ICLR 2015.