STARCell

RecurrentLayers.STARCellType
STARCell(input_size => hidden_size;
    init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform,
    bias = true)

Stackable recurrent cell [Turkoglu2021]. See STAR for a layer that processes entire sequences.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right) \\ \mathbf{k}(t) &= \sigma\left( \mathbf{W}^{k}_{ih} \mathbf{x}(t) + \mathbf{W}^{k}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{k} \right) \\ \mathbf{h}(t) &= \tanh\left( \left(1 - \mathbf{k}(t)\right) \circ \mathbf{h}(t-1) + \mathbf{k}(t) \circ \mathbf{z}(t) \right) \end{aligned}\]

Forward

starcell(inp, state)
starcell(inp)

Arguments

  • inp: The input to the rancell. It should be a vector of size input_size or a matrix of size input_size x batch_size.
  • state: The hidden state of the STARCell. It should be a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • A tuple (output, state), where both elements are given by the updated state new_state, a tensor of size hidden_size or hidden_size x batch_size.
source
  • Turkoglu2021Turkoglu, M. O. et al. Gating Revisited: Deep Multi-layer RNNs That Can Be Trained IEEE Transactions on Pattern Analysis and Machine Intelligence 2021.