STARCell
RecurrentLayers.STARCell
— TypeSTARCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Stackable recurrent cell [Turkoglu2021]. See STAR
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \tanh\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right) \\ \mathbf{k}(t) &= \sigma\left( \mathbf{W}^{k}_{ih} \mathbf{x}(t) + \mathbf{W}^{k}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{k} \right) \\ \mathbf{h}(t) &= \tanh\left( \left(1 - \mathbf{k}(t)\right) \circ \mathbf{h}(t-1) + \mathbf{k}(t) \circ \mathbf{z}(t) \right) \end{aligned}\]
Forward
starcell(inp, state)
starcell(inp)
Arguments
inp
: The input to the rancell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the STARCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Turkoglu2021Turkoglu, M. O. et al. Gating Revisited: Deep Multi-layer RNNs That Can Be Trained IEEE Transactions on Pattern Analysis and Machine Intelligence 2021.