TGRUCell
RecurrentLayers.TGRUCell — TypeTGRUCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true, recurrent_bias = true,
independent_recurrence = false, integration_mode = :addition)Strongly typed gated recurrent unit (Balduzzi and Ghifary, 20–22 Jun 2016). See TGRU for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{z} \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{f} \right) \\ \mathbf{o}(t) &= \tau\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{x}(t-1) + \mathbf{b}^{o} \right) \\ \mathbf{h}(t) &= \mathbf{f}(t) \odot \mathbf{h}(t-1) + \mathbf{z}(t) \odot \mathbf{o}(t) \end{aligned}\]
Forward
tgrucell(inp, state)
tgrucell(inp)Arguments
inp: The input to the tgrucell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.state: The hidden state of the TGRUCell. It should be a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), whereoutput = new_stateis the new hidden state andstate = (new_state, inp)is the new hidden state together with the current input. They are tensors of sizehidden_sizeorhidden_size x batch_size.