TRNNCell
RecurrentLayers.TRNNCell
— TypeTRNNCell(input_size => hidden_size, [activation];
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Strongly typed recurrent unit [Balduzzi2016]. See TRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: activation function. Default istanh
.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}_{fh} \mathbf{x}(t) + \mathbf{b}^{f} \right) \\ \mathbf{h}(t) &= \mathbf{f}(t) \odot \mathbf{h}(t-1) + \left(1 - \mathbf{f}(t)\right) \odot \mathbf{z}(t) \end{aligned}\]
Forward
trnncell(inp, state)
trnncell(inp)
Arguments
inp
: The input to the trnncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the TRNNCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.
- Balduzzi2016Balduzzi, D. et al. Strongly-Typed Recurrent Neural Networks ICML 2016.