UGRNNCell
RecurrentLayers.UGRNNCell
— TypeUGRNNCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
bias = true)
Update gate recurrent unit (Collins et al., 2017). See UGRNN
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{c}(t) &= s\left( \mathbf{W}_{hh}^c \, \mathbf{h}(t-1) + \mathbf{W}_{xh}^c \, \mathbf{x}(t) + \mathbf{b}^c \right), \\ \mathbf{g}(t) &= \sigma\left( \mathbf{W}_{hh}^g \, \mathbf{h}(t-1) + \mathbf{W}_{xh}^g \, \mathbf{x}(t) + \mathbf{b}^g \right), \\ \mathbf{h}(t) &= \mathbf{g}(t) \circ \mathbf{h}(t-1) + \left( 1 - \mathbf{g}(t) \right) \circ \mathbf{c}(t). \end{aligned}\]
Forward
ugrnncell(inp, state)
ugrnncell(inp)
Arguments
inp
: The input to the ugrnncell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the UGRNNCell. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, where both elements are given by the updated statenew_state
, a tensor of sizehidden_size
orhidden_size x batch_size
.