UnICORNNCell
RecurrentLayers.UnICORNNCell — TypeUnICORNNCell(input_size => hidden_size, [dt];
alpha=0.0, init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
init_control_kernel = glorot_uniform,
bias = true, recurrent_bias = true,
independent_recurrence = false, integration_mode = :addition)Undamped independent controlled oscillatory recurrent neural unit (Rusch and Mishra, 18–24 Jul 2021). See UnICORNN for a layer that processes entire sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.dt: time step. Default is 1.0.
Keyword arguments
alpha: Control parameter. Default is 0.0.init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.init_control_kernel: initializer for the control to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{z}(t-1) - \Delta t \, \hat{\sigma}(\mathbf{c}) \odot \left[ \sigma\left( \mathbf{w} \odot \mathbf{h}(t-1) + \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b} \right) + \alpha \, \mathbf{h}(t-1) \right] \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \Delta t \, \hat{\sigma}(\mathbf{c}) \odot \mathbf{z}(t) \end{aligned}\]
Forward
unicornncell(inp, (state, cstate))
unicornncell(inp)Arguments
inp: The input to the unicornncell. It should be a vector of sizeinput_sizeor a matrix of sizeinput_size x batch_size.(state, cstate): A tuple containing the hidden and cell states of the UnICORNNCell. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- A tuple
(output, state), whereoutput = new_stateis the new hidden state andstate = (new_state, new_cstate)is the new hidden and cell state. They are tensors of sizehidden_sizeorhidden_size x batch_size.