WMCLSTMCell
RecurrentLayers.WMCLSTMCell
— TypeWMCLSTMCell(input_size => hidden_size;
init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform,
init_memory_kernel = glorot_uniform,
bias = true)
Long short term memory cell with working memory connections [Landi2021]. See WMCLSTM
for a layer that processes entire sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.init_memory_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W}^{i}_{ch} \mathbf{c}(t-1) \right) + \mathbf{b}^{i} \right) \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W^{f}_{ch}} \mathbf{c}(t-1) \right) + \mathbf{b}^{f} \right) \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W}^{o}_{ch} \mathbf{c}(t) \right) + \mathbf{b}^{o} \right) \\ \mathbf{c}(t) &= \mathbf{f}(t) \circ \mathbf{c}(t-1) + \mathbf{i}(t) \circ \sigma_{c}\left( \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \right) \\ \mathbf{h}(t) &= \mathbf{o}(t) \circ \sigma_{h}\left( \mathbf{c}(t) \right) \end{aligned}\]
Forward
wmclstmcell(inp, (state, cstate))
wmclstmcell(inp)
Arguments
inp
: The input to the wmclstmcell. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of the WMCLSTMCell. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- A tuple
(output, state)
, whereoutput = new_state
is the new hidden state andstate = (new_state, new_cstate)
is the new hidden and cell state. They are tensors of sizehidden_size
orhidden_size x batch_size
.
- Landi2021Landi, F. et al. Working Memory Connections for LSTM Neural Networks 2021.