WMCLSTMCell

RecurrentLayers.WMCLSTMCellType
WMCLSTMCell(input_size => hidden_size;
    init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform,
    init_memory_kernel = glorot_uniform,
    bias = true)

Long short term memory cell with working memory connections [Landi2021]. See WMCLSTM for a layer that processes entire sequences.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • init_memory_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[\begin{aligned} \mathbf{i}(t) &= \sigma\left( \mathbf{W}^{i}_{ih} \mathbf{x}(t) + \mathbf{W}^{i}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W}^{i}_{ch} \mathbf{c}(t-1) \right) + \mathbf{b}^{i} \right) \\ \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W^{f}_{ch}} \mathbf{c}(t-1) \right) + \mathbf{b}^{f} \right) \\ \mathbf{o}(t) &= \sigma\left( \mathbf{W}^{o}_{ih} \mathbf{x}(t) + \mathbf{W}^{o}_{hh} \mathbf{h}(t-1) + \tanh\left( \mathbf{W}^{o}_{ch} \mathbf{c}(t) \right) + \mathbf{b}^{o} \right) \\ \mathbf{c}(t) &= \mathbf{f}(t) \circ \mathbf{c}(t-1) + \mathbf{i}(t) \circ \sigma_{c}\left( \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \right) \\ \mathbf{h}(t) &= \mathbf{o}(t) \circ \sigma_{h}\left( \mathbf{c}(t) \right) \end{aligned}\]

Forward

wmclstmcell(inp, (state, cstate))
wmclstmcell(inp)

Arguments

  • inp: The input to the wmclstmcell. It should be a vector of size input_size or a matrix of size input_size x batch_size.
  • (state, cstate): A tuple containing the hidden and cell states of the WMCLSTMCell. They should be vectors of size hidden_size or matrices of size hidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized by Flux.initialstates.

Returns

  • A tuple (output, state), where output = new_state is the new hidden state and state = (new_state, new_cstate) is the new hidden and cell state. They are tensors of size hidden_size or hidden_size x batch_size.
source
  • Landi2021Landi, F. et al. Working Memory Connections for LSTM Neural Networks 2021.