AntysimmetricRNN
RecurrentLayers.AntisymmetricRNN
— TypeAntisymmetricRNN(input_size, hidden_size, [activation];
return_state = false, kwargs...)
Antisymmetric recurrent neural network [Chang2019]. See AntisymmetricRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: activation function. Default istanh
.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
epsilon
: step size. Default is 1.0.gamma
: strength of diffusion. Default is 0.0.
Equations
\[ \mathbf{h}(t) = \mathbf{h}(t-1) + \epsilon \tanh \left( \mathbf{W}_{ih} \mathbf{x}(t) + \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{b} \right)\]
Forward
asymrnn(inp, state)
asymrnn(inp)
Arguments
inp
: The input to the asymrnn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the AntisymmetricRNN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Chang2019Chang, B. et al. AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks. ICLR 2019.