ATR
RecurrentLayers.ATR
— TypeATR(input_size, hidden_size;
return_state = false, kwargs...)
Addition-subtraction twin-gated recurrent cell [Zhang2018]. See ATRCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
Equations
\[\begin{aligned} \mathbf{p}(t) &= \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b}, \\ \mathbf{q}(t) &= \mathbf{W}_{hh} \mathbf{h}(t-1), \\ \mathbf{i}(t) &= \sigma\left( \mathbf{p}(t) + \mathbf{q}(t) \right), \\ \mathbf{f}(t) &= \sigma\left( \mathbf{p}(t) - \mathbf{q}(t) \right), \\ \mathbf{h}(t) &= \mathbf{i}(t) \circ \mathbf{p}(t) + \mathbf{f}(t) \circ \mathbf{h}(t-1). \end{aligned} \]
Forward
atr(inp, state)
atr(inp)
Arguments
inp
: The input to the atr. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the ATR. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Zhang2018Zhang, B. et al. Simplifying Neural Machine Translation with Addition-Subtraction Twin-Gated Recurrent Networks EMNLP 2018.