CFN
RecurrentLayers.CFN — TypeCFN(input_size => hidden_size;
return_state = false, kwargs...)Chaos free network unit (Laurent and Brecht, 2017). See CFNCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
return_state: Option to return the last state together with the output. Default isfalse.init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{h}(t) &= \boldsymbol{\theta}(t) \odot \tanh\left( \mathbf{h}(t-1) \right) + \boldsymbol{\eta}(t) \odot \tanh\left( \mathbf{W}_{ih} \mathbf{x}(t) \right), \\ \boldsymbol{\theta}(t) &= \sigma\left( \mathbf{W}^{\theta}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{\theta}_{ih} \mathbf{x}(t) + \mathbf{b}^{\theta} \right), \\ \boldsymbol{\eta}(t) &= \sigma\left( \mathbf{W}^{\eta}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{\eta}_{ih} \mathbf{x}(t) + \mathbf{b}^{\eta} \right). \end{aligned}\]
Forward
cfn(inp, state)
cfn(inp)Arguments
inp: The input to the cfn. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.state: The hidden state of the CFN. If given, it is a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.