coRNN

RecurrentLayers.coRNNType
coRNN(input_size => hidden_size, [dt];
    gamma=0.0, epsilon=0.0,
    return_state=false, init_kernel = glorot_uniform,
    init_recurrent_kernel = glorot_uniform, bias = true)

Coupled oscillatory recurrent neural unit [Rusch2021]. See coRNNCell for a layer that processes a single sequence.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.
  • dt: time step. Default is 1.0.

Keyword arguments

  • gamma: damping for state. Default is 0.0.
  • epsilon: damping for candidate state. Default is 0.0.
  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.
  • return_state: Option to return the last state together with the output. Default is false.

Equations

\[\begin{aligned} \mathbf{z}(t) &= \mathbf{z}(t-1) + \Delta t \, \sigma \left( \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{W}_{zh} \mathbf{z}(t-1) + \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b} \right) - \Delta t \, \gamma \mathbf{h}(t-1) - \Delta t \, \epsilon \mathbf{z}(t), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \Delta t \, \mathbf{z}(t), \end{aligned}\]

Forward

cornn(inp, (state, zstate))
cornn(inp)

Arguments

  • inp: The input to the cornn. It should be a vector of size input_size x len or a matrix of size input_size x len x batch_size.
  • (state, cstate): A tuple containing the hidden and cell states of the coRNN. They should be vectors of size hidden_size or matrices of size hidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized by Flux.initialstates.

Returns

  • New hidden states new_states as an array of size hidden_size x len x batch_size. When return_state = true it returns a tuple of the hidden stats new_states and the last state of the iteration.
source
  • Rusch2021Rusch, T. K. et al. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies ICLR 2021.