coRNN
RecurrentLayers.coRNN
— TypecoRNN(input_size => hidden_size, [dt];
gamma=0.0, epsilon=0.0,
return_state=false, init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform, bias = true)
Coupled oscillatory recurrent neural unit [Rusch2021]. See coRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.dt
: time step. Default is 1.0.
Keyword arguments
gamma
: damping for state. Default is 0.0.epsilon
: damping for candidate state. Default is 0.0.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.return_state
: Option to return the last state together with the output. Default isfalse
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \mathbf{z}(t-1) + \Delta t \, \sigma \left( \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{W}_{zh} \mathbf{z}(t-1) + \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{b} \right) - \Delta t \, \gamma \mathbf{h}(t-1) - \Delta t \, \epsilon \mathbf{z}(t), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \Delta t \, \mathbf{z}(t), \end{aligned}\]
Forward
cornn(inp, (state, zstate))
cornn(inp)
Arguments
inp
: The input to thecornn
. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of thecoRNN
. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Rusch2021Rusch, T. K. et al. Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies ICLR 2021.