FastGRNN
RecurrentLayers.FastGRNN
— TypeFastGRNN(input_size => hidden_size, [activation];
return_state = false, kwargs...)
Fast recurrent neural network [Kusupati2018]. See FastGRNNCell
for a layer that processes a single sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: the activation function, defaults totanh_fast
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.init_zeta
: Initializer for the zeta parameter. Default is 1.0.init_nu
: Initializer for the nu parameter. Default is - 4.0.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \left( \left( \zeta (1 - \mathbf{z}(t)) + \nu \right) \odot \tilde{\mathbf{h}}(t) \right) + \mathbf{z}(t) \odot \mathbf{h}(t-1) \end{aligned}\]
Forward
fastgrnn(inp, state)
fastgrnn(inp)
Arguments
inp
: The input to the fastgrnn. It should be a vector of sizeinput_size
or a matrix of sizeinput_size x batch_size
.state
: The hidden state of the FastGRNN. It should be a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Kusupati2018Kusupati, A. et al. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. NeurIPS 2018.