FastRNN
RecurrentLayers.FastRNN — TypeFastRNN(input_size => hidden_size, [activation];
return_state = false, kwargs...)Fast recurrent neural network (Kusupati et al., 2018). See FastRNNCell for a layer that processes a single sequences.
Arguments
input_size => hidden_size: input and inner dimension of the layer.activation: the activation function, defaults totanh_fast.
Keyword arguments
return_state: Option to return the last state together with the output. Default isfalse.init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.init_alpha: Initializer for the alpha parameter. Default is 3.0.init_beta: Initializer for the beta parameter. Default is - 3.0.bias: include input to recurrent bias or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \tilde{\mathbf{h}}(t) &= \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{b} \right), \\ \mathbf{h}(t) &= \sigma(\alpha) \, \tilde{\mathbf{h}}(t) + \sigma(\beta) \, \mathbf{h}(t-1) \end{aligned}\]
Forward
fastrnn(inp, state)
fastrnn(inp)Arguments
inp: The input to the fastrnn. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.state: The hidden state of the FastRNN. If given, it is a vector of sizehidden_sizeor a matrix of sizehidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.