FastRNN
RecurrentLayers.FastRNN
— TypeFastRNN(input_size => hidden_size, [activation];
return_state = false, kwargs...)
Fast recurrent neural network [Kusupati2018]. See FastRNNCell
for a layer that processes a single sequences.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: the activation function, defaults totanh_fast
.
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.init_alpha
: Initializer for the alpha parameter. Default is 3.0.init_beta
: Initializer for the beta parameter. Default is - 3.0.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \tilde{\mathbf{h}}(t) &= \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{W}_{hh} \mathbf{h}(t-1) + \mathbf{b} \right), \\ \mathbf{h}(t) &= \alpha \, \tilde{\mathbf{h}}(t) + \beta \, \mathbf{h}(t-1) \end{aligned}\]
Forward
fastrnn(inp, state)
fastrnn(inp)
Arguments
inp
: The input to the fastrnn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the FastRNN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Kusupati2018Kusupati, A. et al. FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. NeurIPS 2018.