GatedAntisymmetricRNN

RecurrentLayers.GatedAntisymmetricRNNType
GatedAntisymmetricRNN(input_size, hidden_size;
    return_state = false, kwargs...)

Antisymmetric recurrent neural network with gating [Chang2019]. See GatedAntisymmetricRNNCell for a layer that processes a single sequence.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.
  • epsilon: step size. Default is 1.0.
  • gamma: strength of diffusion. Default is 0.0.

Equations

\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \epsilon \, \mathbf{z}(t) \odot \tanh\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right). \end{aligned}\]

Forward

asymrnn(inp, state)
asymrnn(inp)

Arguments

  • inp: The input to the asymrnn. It should be a vector of size input_size x len or a matrix of size input_size x len x batch_size.
  • state: The hidden state of the GatedAntisymmetricRNN. If given, it is a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • New hidden states new_states as an array of size hidden_size x len x batch_size. When return_state = true it returns a tuple of the hidden stats new_states and the last state of the iteration.
source
  • Chang2019Chang, B. et al. AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks. ICLR 2019.