GatedAntisymmetricRNN
RecurrentLayers.GatedAntisymmetricRNN
— TypeGatedAntisymmetricRNN(input_size, hidden_size;
return_state = false, kwargs...)
Antisymmetric recurrent neural network with gating [Chang2019]. See GatedAntisymmetricRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.epsilon
: step size. Default is 1.0.gamma
: strength of diffusion. Default is 0.0.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \mathbf{h}(t-1) + \epsilon \, \mathbf{z}(t) \odot \tanh\left( \left( \mathbf{W}_{hh} - \mathbf{W}_{hh}^\top - \gamma \mathbf{I} \right) \mathbf{h}(t-1) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right). \end{aligned}\]
Forward
asymrnn(inp, state)
asymrnn(inp)
Arguments
inp
: The input to the asymrnn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the GatedAntisymmetricRNN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Chang2019Chang, B. et al. AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks. ICLR 2019.