IndRNN
RecurrentLayers.IndRNN
— TypeIndRNN(input_size, hidden_size, [activation];
return_state = false, kwargs...)
Independently recurrent network [Li2018]. See IndRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.activation
: activation function. Default istanh
.
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[ \mathbf{h}(t) = \sigma\left( \mathbf{W}_{ih} \mathbf{x}(t) + \mathbf{u} \odot \mathbf{h}(t-1) + \mathbf{b} \right)\]
Forward
indrnn(inp, state)
indrnn(inp)
Arguments
inp
: The input to the indrnn. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the IndRNN. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Li2018Li, S. et al. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. CVPR 2018.