JANET
RecurrentLayers.JANET — TypeJANET(input_size => hidden_size;
return_state = false, kwargs...)Just another network (van der Westhuizen and Lasenby, 2018). See JANETCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include a bias or not. Default istrue.return_state: Option to return the last state together with the output. Default isfalse.beta_value: control over the input data flow. Default is 1.0.
Equations
\[\begin{aligned} \mathbf{s}(t) &= \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{b}^{f}, \\ \tilde{\mathbf{c}}(t) &= \tanh\left( \mathbf{W}^{c}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{c}_{ih} \mathbf{x}(t) + \mathbf{b}^{c} \right), \\ \mathbf{c}(t) &= \sigma\left( \mathbf{s}(t) \right) \odot \mathbf{c}(t-1) + \left( 1 - \sigma\left( \mathbf{s}(t) - \beta \right) \right) \odot \tilde{\mathbf{c}}(t), \\ \mathbf{h}(t) &= \mathbf{c}(t). \end{aligned}\]
Forward
janet(inp, (state, cstate))
janet(inp)Arguments
inp: The input to the janet. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.(state, cstate): A tuple containing the hidden and cell states of the JANET. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.