LEM
RecurrentLayers.LEM — TypeLEM(input_size => hidden_size, [dt];
return_state=false, init_kernel = glorot_uniform,
init_recurrent_kernel = glorot_uniform, bias = true)Long expressive memory network (Rusch et al., 2022). See LEMCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.dt: timestep. Defaul is 1.0.
Keyword arguments
init_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.bias: include a bias or not. Default istrue.return_state: Option to return the last state together with the output. Default isfalse.
Equations
\[\begin{aligned} \boldsymbol{\Delta t}(t) &= \Delta \hat{t} \, \hat{\sigma} \left( \mathbf{W}^{1}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{1}_{ih} \mathbf{x}(t) + \mathbf{b}^{1} \right), \\ \overline{\boldsymbol{\Delta t}}(t) &= \Delta \hat{t} \, \hat{\sigma} \left( \mathbf{W}^{2}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{2}_{ih} \mathbf{x}(t) + \mathbf{b}^{2} \right), \\ \mathbf{z}(t) &= \left( 1 - \boldsymbol{\Delta t}(t) \right) \odot \mathbf{z}(t-1) + \boldsymbol{\Delta t}(t) \odot \sigma \left( \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{h}(t) &= \left( 1 - \boldsymbol{\Delta t}(t) \right) \odot \mathbf{h}(t-1) + \boldsymbol{\Delta t}(t) \odot \sigma \left( \mathbf{W}^{h}_{zh} \mathbf{z}(t) + \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{b}^{h} \right) \end{aligned}\]
Forward
lem(inp, (state, zstate))
lem(inp)Arguments
inp: The input to the LEM. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.(state, cstate): A tuple containing the hidden and cell states of the LEM. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.