LiGRU
RecurrentLayers.LiGRU
— TypeLiGRU(input_size => hidden_size;
return_state = false, kwargs...)
Light gated recurrent network [Ravanelli2018]. The implementation does not include the batch normalization as described in the original paper. See LiGRUCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \sigma\left( \mathbf{W}^{z}_{ih} \mathbf{x}(t) + \mathbf{W}^{z}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{z} \right), \\ \tilde{\mathbf{h}}(t) &= \text{ReLU}\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \mathbf{z}(t) \odot \mathbf{h}(t-1) + \left(1 - \mathbf{z}(t)\right) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]
Forward
ligru(inp, state)
ligru(inp)
Arguments
inp
: The input to the ligru. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.state
: The hidden state of the LiGRU. If given, it is a vector of sizehidden_size
or a matrix of sizehidden_size x batch_size
. If not provided, it is assumed to be a vector of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Ravanelli2018Ravanelli, M. et al. Light Gated Recurrent Units for Speech Recognition. IEEE Transactions on Emerging Topics in Computing 2018.