MGU

RecurrentLayers.MGUType
MGU(input_size => hidden_size;
    return_state = false, kwargs...)

Minimal gated unit network [Zhou2016]. See MGUCell for a layer that processes a single sequence.

Arguments

  • input_size => hidden_size: input and inner dimension of the layer.

Keyword arguments

  • return_state: Option to return the last state together with the output. Default is false.
  • init_kernel: initializer for the input to hidden weights. Default is glorot_uniform.
  • init_recurrent_kernel: initializer for the hidden to hidden weights. Default is glorot_uniform.
  • bias: include a bias or not. Default is true.

Equations

\[\begin{aligned} \mathbf{f}(t) &= \sigma\left( \mathbf{W}^{f}_{ih} \mathbf{x}(t) + \mathbf{W}^{f}_{hh} \mathbf{h}(t-1) + \mathbf{b}^{f} \right), \\ \tilde{\mathbf{h}}(t) &= \tanh\left( \mathbf{W}^{h}_{ih} \mathbf{x}(t) + \mathbf{W}^{h}_{hh} \left( \mathbf{f}(t) \odot \mathbf{h}(t-1) \right) + \mathbf{b}^{h} \right), \\ \mathbf{h}(t) &= \left(1 - \mathbf{f}(t)\right) \odot \mathbf{h}(t-1) + \mathbf{f}(t) \odot \tilde{\mathbf{h}}(t) \end{aligned}\]

Forward

mgu(inp, state)
mgu(inp)

Arguments

  • inp: The input to the mgu. It should be a vector of size input_size x len or a matrix of size input_size x len x batch_size.
  • state: The hidden state of the MGU. If given, it is a vector of size hidden_size or a matrix of size hidden_size x batch_size. If not provided, it is assumed to be a vector of zeros, initialized by Flux.initialstates.

Returns

  • New hidden states new_states as an array of size hidden_size x len x batch_size. When return_state = true it returns a tuple of the hidden stats new_states and the last state of the iteration.
source
  • Zhou2016Zhou, G.-B. et al. Minimal Gated Unit for Recurrent Neural Networks. International Journal of Automation and Computing 2016.