MinimalRNN
RecurrentLayers.MinimalRNN — TypeMinimalRNN(input_size => hidden_size;
return_state = false, kwargs...)Minimal recurrent neural network (Chen, 2017). See MinimalRNNCell for a layer that processes a single sequence.
Arguments
input_size => hidden_size: input and inner dimension of the layer.
Keyword arguments
return_state: Option to return the last state together with the output. Default isfalse.init_encoder_kernel: initializer for the input to hidden weights. Default isglorot_uniform.init_recurrent_kernel: initializer for the hidden to hidden weights. Default isglorot_uniform.init_memory_kernel: initializer for the memory to hidden weights. Default isglorot_uniform.encoder_bias: include a bias in the encoder or not. Default istrue.recurrent_bias: include recurrent to recurrent bias or not. Default istrue.memory_bias: include memory to recurrent bias or not. Default istrue.independent_recurrence: flag to toggle independent recurrence. Iftrue, the recurrent to recurrent weights are a vector instead of a matrix. Defaultfalse.integration_mode: determines how the input and hidden projections are combined. The options are:additionand:multiplicative_integration. Defaults to:addition.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \Phi(\mathbf{x}(t)) = \tanh\left( \mathbf{W}_{xz} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{u}(t) &= \sigma\left( \mathbf{W}_{hh}^{u} \mathbf{h}(t-1) + \mathbf{W}_{zh}^{u} \mathbf{z}(t) + \mathbf{b}^{u} \right), \\ \mathbf{h}(t) &= \mathbf{u}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{u}(t)\right) \circ \mathbf{z}(t) \end{aligned}\]
Forward
minimalrnn(inp, (state, c_state))
minimalrnn(inp)Arguments
inp: The input to theminimalrnn. It should be a vector of sizeinput_size x lenor a matrix of sizeinput_size x len x batch_size.(state, cstate): A tuple containing the hidden and cell states of theMinimalRNN. They should be vectors of sizehidden_sizeor matrices of sizehidden_size x batch_size. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates.
Returns
- New hidden states
new_statesas an array of sizehidden_size x len x batch_size. Whenreturn_state = trueit returns a tuple of the hidden statsnew_statesand the last state of the iteration.