MinimalRNN
RecurrentLayers.MinimalRNN
— TypeMinimalRNN(input_size => hidden_size;
return_state = false, kwargs...)
Minimal recurrent neural network [Zhang2017]. See MinimalRNNCell
for a layer that processes a single sequence.
Arguments
input_size => hidden_size
: input and inner dimension of the layer.
Keyword arguments
return_state
: Option to return the last state together with the output. Default isfalse
.init_kernel
: initializer for the input to hidden weights. Default isglorot_uniform
.init_recurrent_kernel
: initializer for the hidden to hidden weights. Default isglorot_uniform
.bias
: include a bias or not. Default istrue
.encoder_bias
: include a bias in the encoder or not. Default istrue
.
Equations
\[\begin{aligned} \mathbf{z}(t) &= \Phi(\mathbf{x}(t)) = \tanh\left( \mathbf{W}_{xz} \mathbf{x}(t) + \mathbf{b}^{z} \right), \\ \mathbf{u}(t) &= \sigma\left( \mathbf{W}_{hh}^{u} \mathbf{h}(t-1) + \mathbf{W}_{zh}^{u} \mathbf{z}(t) + \mathbf{b}^{u} \right), \\ \mathbf{h}(t) &= \mathbf{u}(t) \circ \mathbf{h}(t-1) + \left(1 - \mathbf{u}(t)\right) \circ \mathbf{z}(t) \end{aligned}\]
Forward
minimalrnn(inp, (state, c_state))
minimalrnn(inp)
Arguments
inp
: The input to theminimalrnn
. It should be a vector of sizeinput_size x len
or a matrix of sizeinput_size x len x batch_size
.(state, cstate)
: A tuple containing the hidden and cell states of theMinimalRNN
. They should be vectors of sizehidden_size
or matrices of sizehidden_size x batch_size
. If not provided, they are assumed to be vectors of zeros, initialized byFlux.initialstates
.
Returns
- New hidden states
new_states
as an array of sizehidden_size x len x batch_size
. Whenreturn_state = true
it returns a tuple of the hidden statsnew_states
and the last state of the iteration.
- Zhang2017Zhang, M. et al. Minimal RNN: Toward more interpretable and trainable recurrent nets. NeurIPS 2017.